Explore Your Local Site

Looks like you've landed on our   site. Let's take you home:    

Please note that the content and products on the    site might not be available in your region.

 

Choose the language:

  Homepage
Continue on the current website:  

 

Einsatz von künstlicher Intelligenz in der neurologischen Bildgebung

Neurologische Erkrankungen sind weltweit die häufigste Ursache für Invalidität und die zweithäufigste Todesursache (Feigin et al., 2020). Bei neurologischen Fragestellungen kommen im Wesentlichen bildgebende Verfahren zur Anwendung, die große Mengen an komplexen Daten liefern, wie die Magnetresonanztomographie (MRT), die Computertomographie (CT) und nuklearmedizinische Verfahren. Deshalb beschäftigt sich ein großer Teil der Forschung zum Einsatz von künstlicher Intelligenz (KI) in der Radiologie mit neurologischen Erkrankungen. Tatsächlich fokussieren sich 29 % bis 38 % aller kommerziell verfügbaren KI-Anwendungen in der Radiologie auf das Gehirn oder die Wirbelsäule. Das sind prozentual mehr als für jede andere anatomische Region (AI Central).

Die meisten Anwendungen sollen Radiologen unterstützen, indem sie ihnen bei der Befundung der Bilder helfen und damit unter anderem die Effektivität ihrer Arbeit steigern, oder indem sie beispielsweise durch detailliertere quantitative Auswertung der Neuroimaging-Daten die Möglichkeiten des Radiologen erweitern (Olthof et al., 2020). In diesem eBook werden die häufigsten KI-Anwendungen in der Neuroradiologie zusammen mit der verfügbaren unterstützenden Evidenz diskutiert.

Intrakranielle Hämorrhagie

Jedes Jahr erleiden weltweit etwa 3,4 Millionen Menschen eine akute intrakranielle Hämorrhagie (ICH) (World Stroke Organisation, 2022). Die ICH geht mit einer hohen Morbidität und Mortalität einher und erfordert häufig ein sofortiges neurochirurgisches Eingreifen oder engmaschige klinische und bildgebende Kontrollen (Broderick et al., 2007; van Asch et al., 2010). Insbesondere bei Patienten mit akuten neurologischen Defiziten und Verdacht auf Schlaganfall ist der Nachweis einer akuten intrakraniellen Hämorrhagie von entscheidender Bedeutung, da diese eine absolute Kontraindikation für eine intravenöse Thrombolyse darstellt (Fugate & Rabinstein, 2015).

In der Notfallmedizin werden ICH-Verdachtsfälle üblicherweise zunächst mit einem Schädel-CT ohne Kontrastmittel (NCCT) untersucht. Der Grund dafür ist, dass das CT in der breite verfügbar, schnell und in Bezug auf ICH hoch-sensitiv ist. Darüber hinaus gibt es relativ wenige Kontraindikationen (A. Jain et al., 2021). Die Alternative ist das MRT, die eine höhere Sensitivität für sehr kleine und chronische Blutungen bietet, aber mehr Zeit in Anspruch nimmt, weniger gut verfügbar und teurer ist und bei einigen Patienten kontraindiziert ist (Chalela et al., 2007).

In einer Studie, welche Fehlermuster beim Erkennen von ICH durch in der Facharztausbildung befindliche radiologische Assistenzärzte untersuchte, fanden die Wissenschaftler bei 4,6 % der von den Assistenzärzten über Nacht befundeten Untersuchungen Abweichungen und 13,6 % dieser Abweichungen bestanden darin, dass Blutungen im Befund der Assistenzärzte nicht oder nicht korrekt dokumentiert waren (Strub et al., 2007). Intrakranielle Blutungen lassen sich einteilen in intraparenchymale Blutungen, intraventrikuläre Blutungen, Subduralblutungen, Epiduralblutungen und Subarachnoidalblutungen. Dabei werden Subdural- und Subarachnoidalblutungen häufig übersehen, insbesondere wenn sie sehr klein sind (Strub et al., 2007).

Zudem werden normale anatomische Gegebenheiten im Gehirn und Bildartefakte von noch in der Ausbildung befindlichen radiologischen Assistenzärzten oft als intrakranielle Hämorrhagie fehlinterpretiert (Erly et al., 2002).

Die meisten KI-basierten Anwendungen für die Detektion und Klassifikation von intrakraniellen Hämorrhagien nutzen Daten von CT-Untersuchungen ohne Kontrastmittelgabe (NCCT) und basieren auf konvolutionalen neuronalen Netzen. Mit wenigen Ausnahmen (Bar et al., 2019; Wang et al., 2021; Ye et al., 2019) ist es bei den meisten Anwendungen nicht einfach, eine sehr detaillierte Beschreibung der Netzwerkarchitektur zur erhalten. Menge und Qualität, der für das Training dieser Algorithmen verwendeten Daten variieren stark und reichen von Hunderten (Bar et al., 2019; Heit et al., 2021) über Tausende (McLouth et al., 2021; Rava, Seymour, et al., 2021) bis hin zu Zehntausenden (Chilamkurthy et al., 2018; Gibson et al., 2022; Ginat, 2021) von NCCT-Untersuchungen.

Neben der Beantwortung der Fragestellung, ob eine ICH vorliegt oder nicht, wurden KI-basierte Algorithmen auch für die Einteilung in ICH-Unterformen (Chilamkurthy et al., 2018; Gibson et al., 2022; Wang et al., 2021; Ye et al., 2019), den Nachweis von Begleitbefunden wie Masseneffekten, Mittellinienverlagerung und Frakturen (Chilamkurthy et al., 2018) und zur Segmentierung und Volumetrie der Hämorrhagie (Bar et al., 2019; Gibson et al., 2022; Heit et al., 2021) verwendet. Eine der KI-basierten Anwendungen liefert darüber hinaus eine Einschätzung des Unsicherheitsgrades der Entscheidung des Algorithmus, um dem Radiologen die Interpretation des Algorithmus-Outputs zu erleichtern (Gibson et al., 2022).

Bezogen auf die ICH-Unterformen zeigen die KI-basierten Anwendungen aus den erwähnten Studien im Allgemeinen die höchste Sensitivität für intraventrikuläre Hämorrhagien (Chilamkurthy et al., 2018; Gibson et al., 2022; McLouth et al., 2021; Wang et al., 2021), was vermutlich auf den großen Dichteunterschied zwischen Zerebrospinalflüssigkeit und Blut im CT zurückzuführen ist. Die Sensitivität für Subarachnoidalblutungen ist bei allen Anwendungen relativ gering (Gibson et al., 2022; McLouth et al., 2021; Rava, Seymour, et al., 2021; Wang et al., 2021; Ye et al., 2019), möglicherweise weil diese eher klein und/ oder knöchernen Strukturen oder hyperdensen CT-Artefakten (z. B. in den Basalzisternen) angelagert sind. Andere Anwendungen hatten auch eine relativ geringe Sensitivität für Subduralblutungen, insbesondere wenn diese in weniger üblichen Lokalisationen wie beispielsweise entlang der Falx cerebri auftraten (Chilamkurthy et al., 2018; Rao et al., 2021; Wang et al., 2021; Ye et al., 2019). Darüber hinaus ist die Sensitivität auch bei kleineren Blutungen, die je nach Studie als solche mit einem Volumen von < 1,5 ml oder < 5 ml definiert sind, tendenziell geringer (Heit et al., 2021; McLouth et al., 2021; Rava, Seymour, et al., 2021). Lediglich in einer der genannten Studien wurde systematisch der Einfluss von unterschiedlichen Geräteherstellern und Untersuchungsparametern auf die Leistungsfähigkeit von KI-basierten Anwendungen im Rahmen der ICH-Diagnostik untersucht (McLouth et al., 2021).

In einigen Studien erfolgte ein direkter Vergleich der Leistungsfähigkeit von KI-basierten Anwendungen mit der von Experten. In einer Studie an 160 NCCT-Untersuchungen (49 % mit ICH), in der die Befundung durch einen neuroradiologischen Facharzt als Ground Truth verwendet wurde, erzielte ein konvolutionales neuronales Netz (CNN) vom U-Net-Typ eine geringere Sensitivität (91 %) und Spezifität (89 %) als zwei in der Facharztausbildung befindliche neuroradiologische Assistenzärzte (Sensitivität von 99-100 % und Spezifität von 98 %) (Schmitt et al., 2022). In einer anderen Studie wurden Interpretationen einer von der FDA zugelassenen und das CE-Zeichen tragenden KI-basierten Anwendung mit den als Ground Truth verwendeten Befunden eines Gremiums aus drei neuroradiologischen Fachärzten verglichen.

Die KI-basierte Anwendung erzielte die gleiche Sensitivität wie ein neuroradiologischer Facharzt (91,9 %), allerdings war die Spezifität der Anwendung wesentlich niedriger (Anwendung: 84,4 %; Facharzt: 99,6 %) (Eldaya et al., 2022). Eine andere KI-basierte Anwendung hatte eine höhere Sensitivität und etwas geringere Spezifität für ICH als in der Ausbildung befindliche Radiologen (Ye et al., 2019). Duraverdickungen, Kalzifzierungen der Dura oder des Parenchyms sowie Bewegungs- und Streifenartefakte werden von KI-basierten Anwendungen besonders häufig als ICH fehlinterpretiert (Bar et al., 2019; Eldaya et al., 2022; Rao et al., 2021).

Während in zahlreichen Studien die diagnostische Genauigkeit von KI-basierten Anwendungen bei der ICH-Diagnostik untersucht wurde, ist ein weiterer potenzieller Nutzen eines KI-basierten ICH-Screenings die schnellere Befundung, die eine frühere Versorgung des Patienten ermöglichen kann. Auch wenn der Einfluss eines KI-basierten Screenings auf den zeitlichen Ablauf nur in weniger Studien untersucht wurde, unterstützen die Ergebnisse einiger Studien eine schnellere Befundung. In einer Studie an 620 NCCT-Untersuchungen betrug die Zeit vom Ende der Untersuchung bis zum Vorliegen des Befunds 73 Minuten, wenn die KI den menschlichen Befunder über einen positiven Befund unterrichtete, und ohne eine solche Unterrichtung 132 Minuten (Wismüller & Stockmaster, 2020). In einer anderen Studie war der Einsatz der KI-basierten Anwendung mit einer kürzeren Aufenthaltsdauer des Patienten in der Notaufnahme assoziiert (561 Minuten vs. 781 Minuten ohne KI) (Chien et al., 2022).

Akuter ischämischer Schlaganfall

Verschluss großer Gefäße

Bei Patienten mit akutem ischämischem Schlaganfall ist es für eine rechtzeitige Behandlung essentiell, dass ein Verschluss großer Gefäße im Gehirn schnell erkannt wird. Im Allgemeinen bezieht sich die Bezeichnung „Verschluss großer Gefäße“ (LVO für engl. Large Vessel Occlusion) auf Arterien, die groß genug sind, um mittels mechanischer Thrombektomie behandelt zu werden. Dazu gehören nach aktuellem Stand die Arteria carotis interna, die proximalen Anteile der Arteria cerebri media (M1 und M2), anterior (A1) und posterior (P1) sowie die Arteria basilaris (Mokin et al., 2019; Pirson et al., 2022).

LVOs werden entweder mittels digitaler Subtraktionsangiographie, CT-Angiographie oder MR-Angiographie direkt oder mit nicht-angiographischen Techniken indirekt nachgewiesen. In der Angiographie erscheint ein Gefäßverschluss als plötzliche Unterbrechung entweder der Kontrastmittelfüllung einer Arterie (bei Angiographien mit Kontrastverstärkung) oder des Flusssignals (bei Techniken ohne Kontrastverstärkung wie der Time-of-Flight-MR-Angiographie). Dabei kann eine Kontrastmittelfüllung oder ein Flusssignal distal der Verschlussstelle vorliegen oder nicht. Indirekte Hinweise auf eine LVO in nicht-angiographischen bildgebenden Verfahren sind ein hyperdenses Gefäß in einer NCCT-Aufnahme (welches den verschließenden Thrombus darstellt) (Gács et al., 1983) bzw. ein auf einen Thrombus hinweisendes „Susceptibility Sign“ auf T2*- oder suszeptibilitätsgewichteten MRT-Aufnahmen (Flacke et al., 2000).

Die meisten KI-basierten Lösungen für den LVONachweis nutzen die CT-Angiographie (Amukotuwa et al., 2019; Murray et al., 2020; Rava, Peterson, et al., 2021; Wardlaw et al., 2022; Yahav-Dovrat et al., 2021), andere NCCT-Aufnahmen (Lisowska et al., 2017; Olive-Gadea et al., 2020). Die meisten Anwendungen konzentrierten sich bislang auf LVOs der intrakraniellen Arterien des vorderen Kreislaufs (Adhya et al., 2021; Amukotuwa et al., 2019; Dehkharghani et al., 2021; Rava, Peterson, et al., 2021), was die Tatsache widerspiegelt, dass mechanische Thrombektomien bei Gefäßverschlüssen im hinteren Kreislauf deutlich seltener erfolgen (Adusumilli et al., 2022).

In einer Übersichtsarbeit zur Leistungsfähigkeit von KI-basierten Anwendungen beim LVO-Nachweis lagen die Sensitivitäten im Bereich von 80-96 % und die Spezifitäten im Bereich von 90-98 % (Wardlaw et al., 2022). In den in der Übersichtsarbeit berücksichtigten Studien waren falsch-positive Befunde meist auf arterielle Stenosen, eine intrakranielle Hämorrhagie, hypervaskuläre Tumoren oder distale Gefäßverschlüsse, die nicht die Kriterien für einen LVO erfüllen, zurückzuführen (Amukotuwa et al., 2019; Yahav-Dovrat et al., 2021). Leider gibt es für einige das CE-Zeichen tragende KI-basierte Anwendungen, darunter solche für den LVO-Nachweis, keine veröffentlichten Daten zur klinischen Leistungsfähigkeit (van Leeuwen et al., 2021).

Zum Zeitpunkt des Verfassens dieses eBooks liegt nur eine Studie zur Kosteneffektivität von KI-basierten Lösungen beim LVO-Nachweis vor. Diese Studie kommt zu dem Ergebnis, dass unter der Annahme, dass Kliniker 6 % der LVOs nicht erkennen und KI diesen Wert auf die Hälfte reduzieren kann, da durch wären im Vereinigten Königreich jährlich Kosteneinsparungen in Höhe von 11 Millionen USD erzielbar (van Leeuwen, Meijer, et al., 2021).

Da LVOs von radiologischen Fachärzten und in der Ausbildung befindlichen Radiologen in Angiographien in der Regel erkannt werden (Duvekot et al., 2021), liegt der potenzielle Nutzen einer KI-basierten LVO-Detektion primär in der früheren Therapie, die durch eine schnellere Befundung ermöglicht wird. Bei einigen der derzeit verfügbaren Anwendungen dauert die Verarbeitung der Daten und Entscheidungsfindung bezüglich des Vorliegens einer LVO zwischen etwa 1 und 3,5 Minuten (Amukotuwa et al., 2019; Dehkharghani et al., 2021; Olive-Gadea et al., 2020). Einige Anwendungen gingen mit einer Beschleunigung von Abläufen einher: So konnte die Zeit zwischen der bildgebenden Untersuchung bis zur Verlegung des Patienten in ein Krankenhaus, in dem eine mechanische Thrombektomie durchgeführt werden konnte, um etwa 22,5 Minuten (Hassan et al., 2020), die Zeit vom Eintreffen des Patienten im Krankenhaus bis zur Benachrichtigung des zuständigen (neuroendovaskulären) Operationsteams um etwa 15 Minuten (Morey et al., 2021) und die Zeit von der bildgebenden Untersuchung bis zur Leistenpunktion bei mechanischer Thrombektomie um etwa 25 Minuten (Adhya et al., 2021) verkürzt werden.

Frühe ischämische Veränderungen im Hirngewebe

Im CT sind frühe Hirngewebeveränderungen bei Ischämie die Gewebeschwellung und eine verminderte Gewebeabschwächung durch ein ionisches Ödem (Marks et al., 1999). Diese Veränderungen sind in von Radiologen verwendeten Instrumenten für die visuelle Beurteilung integriert, deren verbreitetstes der ASPECTS-Score (Alberta Stroke Program Early CT Score) ist. Der ASPECTS-Score kann helfen, sowohl funktionelle Ergebnisse als auch das Auftreten einer symptomatischen intrakraniellen Hämorrhagie nach intravenöser Thrombolyse vorherzusagen (Schröder & Thomalla, 2016). Die meisten KI-basierten Anwendungen zum frühen Nachweis ischämischer Veränderungen in NCCT-Untersuchungen liefern eine automatisierte Bewertung mittels ASPECTS (Wardlaw et al., 2022). Andere Anwendungen zielen darauf ab, frühe ischämische Veränderungen mittels CT-Angiographie (Abdelkhaleq et al., 2021; Öman et al., 2019) oder CT-Perfusion (Hakim et al., 2021) zu erkennen.

Die Mehrzahl der KI-basierten Algorithmen zum Nachweis früher ischämischer Veränderungen im CT verwenden als Referenzstandard visuelle Befundungen von NCCT-Aufnahmen durch Radiologen, Neuroradiologen und andere Ärzte (Goebel et al., 2018; Hoelter et al., 2020; Kniep et al., 2020; Maegerlein et al., 2019; Seker et al., 2019), und einige arbeiten mit diffusionsgewichteten MRT-Aufnahmen (Abdelkhaleq et al., 2021; Herweh et al., 2016; H. Kuang et al., 2019; Qiu et al., 2020) oder dem mittels CT-Perfusion definierten Infarktkern (Olive-Gadea et al., 2019). Die meisten dieser Anwendungen verwenden das Random-Forest-Verfahren (Guberina et al., 2018; Herweh et al., 2016; Kniep et al., 2020; H. Kuang et al., 2019; Maegerlein et al., 2019; Nagel et al., 2017; Olive-Gadea et al., 2019; Qiu et al., 2020) oder konvolutionale neuronale Netze (Öman et al., 2019). Darüber hinaus befassten sich zahlreiche Studie mit der automatisierten Identifikation früher ischämischer Veränderungen auf diffusionsgewichteten MRT-Aufnahmen (Boldsen et al., 2018; Mohd Saad et al., 2019; Nazari-Farsani et al., 2020; Siddique et al., 2022; Song, 2019; Wong et al., 2022), was in der akuten Situation eine hoch-sensitive aber nicht breit verfügbare Methode ist.

Ähnlich wie bei den LVO-Anwendungen gibt es für einige das CE-Zeichen tragende KI-basierte Lösungen zum Nachweis früher ischämischer Veränderungen keine öffentlich verfügbaren Daten zu ihrer Leistungsfähigkeit (van Leeuwen et al., 2021). Der Algorithmus mit den umfangreichsten publizierten Daten ist ein Random-Forest-Ansatz für die ASPECTS-Bewertung, welcher sich mit einer Sensitivität von 44 % und Spezifität von 93 % (bei Anwendung von CT-Folgeaufnahmen als Ground Truth) als nicht-unterlegen gegenüber der Befundung durch einen Neuroradiologen erwies (Nagel et al., 2017). In einer anderen Studie zum gleichen Algorithmus und mit gleichem Ground-Truth-Ansatz wurde mit dem Algorithmus eine höhere Sensitivität (83 % vs. 73 %) aber geringere Spezifität (57 % vs. 84 %) bei der ASPECTS-Bewertung im Vergleich zur Befundung durch einen Neuroradiologen erzielt (Guberina et al., 2018). In einer dritten Studie schnitt dieser Algorithmus bei der ASPECTS-Bewertung besser ab als Neurologen und in der Facharztausbildung befindliche neurologische Assistenzärzte und vergleichbar gut wie Neuroradiologen (Ferreti et al., 2020).

Insgesamt gibt es wenige direkte Vergleichsstudien zu unterschiedlichen KI-basierten Anwendungen für den Nachweis früher ischämischer Veränderungen in NCCT-Aufnahmen (Goebel et al., 2018; Hoelter et al., 2020). In einer Studie wurden drei kommerziell erhältliche Anwendungen (zwei auf maschinellem Lernen und eine auf Densitometrie basierend) bei 131 Patienten verglichen (Hoelter et al., 2020). In der Studie erzielten die KI-basierten Anwendungen im Vergleich zum Konsens von drei Neuroradiologen eine Fläche unter der Kurve (AUC) zwischen 0,73 und 0,76.

Die visuelle Beurteilung von frühen ischämischen Veränderungen auf NCCT-Aufnahmen ist in der hinteren Schädelgrube, wo häufig die Interpretation behindernde Artefakte auftreten, besonders schwierig (Hwang et al., 2012). In einer Kohorte von 69 Patienten mit Basilararterienverschluss, bei denen innerhalb von 6 Stunden nach Symptombeginn eine Untersuchung mittels NCCT erfolgte, identifizierte ein Random-Forest-basierter Algorithmus frühe ischämische Veränderungen im hinteren Kreislauf mit einer AUC zwischen 0,70 (im Cerebellum) und 0,82 (im Thalamus), wobei NCCT-Folgeuntersuchungen als Ground Truth verwendet wurden (Kniep et al., 2020). Neben der anatomischen Lokalisation haben mehrere weitere Faktoren Einfluss auf die Nachweisbarkeit früher ischämischer Veränderungen in NCCT-Aufnahmen. In einer Studie fiel die Genauigkeit der ASPECTS-Bewertung je nach Art der verwendeten CT-Rekonstruktion unterschiedlich aus, wobei ein automatisierter Algorithmus über die unterschiedlichen untersuchten CT-Rekonstruktionen hinweg eine einheitlichere Leistungsfähigkeit zeigte als in der Ausbildung befindliche Radiologen oder radiologische Fachärzte (Seker et al., 2019). Darüber hinaus verbessert sich die Genauigkeit sowohl humaner als auch KI-basierter ASPECTS-Bewertungen mit zunehmender Zeit zwischen Symptombeginn und NCCT-Untersuchung, weil dann die frühen ischämischen Veränderungen deutlicher hervortreten (Potreck et al., 2022).

Schlaganfälle mit unbekanntem Symptombeginn

Für die adäquate Behandlung eines Schlaganfalls ist es entscheidend, die seit Symptombeginn verstrichene Zeit zu kennen, da eine intravenöse Thrombolyse nur innerhalb von 4,5 Stunden nach Symptombeginn indiziert ist (Powers et al., 2018). Allerdings ist der Zeitpunkt des Symptombeginns nicht immer eindeutig zu bestimmen, beispielsweise bei Patienten mit Aufwach-Schlaganfall. In einer populationsbasierten Studie zu Patienten, welche eine Notfallambulanz aufsuchten, lag bei etwa 14 % der Patienten ein solcher Aufwach-Schlaganfall vor (Mackey et al., 2011). Es gibt mehrere auf bildgebenden Verfahren beruhende Ansätze zur Identifikation von Patienten, die sich im Thrombolyse-Zeitfenster befinden.

Ein eingehend untersuchter Ansatz ist der Nachweis einer akuten Schlaganfall-Läsion auf diffusionsgewichteten (DWI) MRT-Aufnahmen bei Fehlen einer solchen Läsion in mittels „Fluid-Attenuated Inversion Recovery“ (FLAIR) arbeitenden MRT-Sequenzen (Ebinger et al., 2010; Thomalla et al., 2011; Thomalla et al., 2018). Die automatisierte Interpretation von DWI- und FLAIR-MRT-Aufnahmen ist ebenfalls ein Ziel KI-basierter Algorithmen, welche Radiologen unterstützen sollen.

Ansätze für eine KI-basierte Klassifikation der Zeit seit dem Schlaganfall umfassen CNNs (Polson et al., 2022) sowie eine Kombination aus verschiedenen auf maschinellem Lernen basierenden Algorithmen (Jiang et al., 2022; H. Lee et al., 2020; Zhu et al., 2021). Einige Studien verwendeten einen Radiomik-basierten Ansatz mit Segmentierung von DWI- und FLAIR-Läsionen, Extraktion unterschiedlicher Bildmerkmale aus diesen und anschließender Einspeisung dieser Merkmale in verschiedene Klassifikations-Algorithmen (Jiang et al., 2022; H. Lee et al., 2020; Zhu et al., 2021).

In mehreren Studien lieferte die KI-basierte Klassifikation der Zeit seit Eintreten des Schlaganfalls höhere Sensitivitäten aber geringere Spezifitäten als die visuelle Befundung durch Radiologen (H. Lee et al., 2020; Polson et al., 2022). Dabei wurden Sensitivitäten von 73-86 % und Spezifitäten von 68-85 % genannt (Jiang et al., 2022; H. Lee et al., 2020; Polson et al., 2022; Zhu et al., 2021). In einer Studie, in der ein Radiomik-basierter Ansatz auf Grundlage von lediglich den DWI- und T1-gewichteten Aufnahmen in Kombination mit einem Deep-Learning- Algorithmus verwendet wurde, wurde in Bezug auf die Identifikation von Patienten, die sich im Thrombolyse- Zeitfenster befanden, eine Sensitivität von 95 % und eine Spezifität von 50 % beobachtet (Y.-Q- Zhang et al., 2022).

Traumatische Hirnschädigung

Eine akute traumatische Hirnschädigung ist ein plötzliches physikalisches Trauma, welches das Gehirn schädigt. Mögliche Manifestationen sind unter anderem ICH, diffuse axonale Schädigung und Schädelund Gesichtsfrakturen. Darüber hinaus lassen sich in der Bildgebung Folgeerscheinungen einiger dieser Manifestationen wie Mittellinienverlagerung und Hirnprolaps nachweisen, welche in schweren Fällen eine Notfalltherapie erfordern können (Schweitzer et al., 2019).

Nicht-dislozierte Schädelfrakturen ohne ICH werden konservativ behandelt (Skull Fractures, o.D.), und wenige Studien haben sich mit ihrem Nachweis mittels KI-basierter Verfahren beschäftigt. Vor kurzem wurden jedoch Versuche unternommen, in NCCT-Aufnahmen erkannte Schädelfrakturen zu klassifizieren.

Ein an 174 NCCT-Aufnahmen (103 mit Frakturen) trainierter Multi-Label-Learning-Ansatz erzielte im Hinblick auf den Nachweis von Schädelfrakturen eine Präzision von 98 % und eine Spezifität von 92 % (Emon et al., 2022). Die niedrigste Präzision und Spezifität wurde für eingedrückte Frakturen und die höchste Präzision und Spezifität für lineare Frakturen und Gesichtsfrakturen erreicht. Mit einem auf Deep Learning basierenden Ansatz, der darauf abzielte, kritische Befunde im Schädel- CT ohne Kontrastmittelgabe zu identifizieren, wurde im Hinblick auf den Nachweis von Schädelfrakturen eine Sensitivität von 81,2-87,2 % und eine Spezifität von 77,5-86,1 % erzielt (je nach Test-Datensatz) (Chilamkurthy et al., 2018). In der gleichen Studie wurden Mittellinienverlagerung und Masseneffekt, zwei häufige Folgen von traumatisch bedingten ICH, mit einer Sensitivität von 87,5-90,1 % bzw. 70,9-81,2 % und einer Spezifität von 83,7-89,4 % bzw. 61,6-73,4 % (je nach Test- Datensatz) identifiziert. Ein Algorithmus, in dem eine Extraktion morphologischer Schädelmerkmale mit CNNs kombiniert wurde und der an 25 NCCT-Untersuchungen von Patienten mit Schädeltrauma trainiert und an 10 entsprechenden NCCT-Untersuchungen getestet wurde, erzielte eine durchschnittliche Präzision für den Nachweis von Schädelfrakturen von 60 % (Z. Kuang et al., 2020). Ein weiterer Deep-Learning-Algorithmus erkannte in einer Serie von 150 Postmortem-Schädel-CTs Schädelfrakturen mit einer Sensitivität von 91,4 % und einer Spezifität von 87,5 % (Heimer et al., 2018).

Neurodegenerative Erkrankungen

Viele neurologische Erkrankungen lassen sich als neurodegenerativ beschreiben, üblicherweise wird der Begriff jedoch für chronische neurologische Erkrankungen verwendet, die mit einem allmählichen Verlust von Gehirngewebe einhergehen und im Allgemeinen zu Demenz und/oder Störungen der motorischen Funktion führen (Lamptey et al., 2022). Mehr als jeder fünfte von der FDA freigegebene und das CE-Zeichen tragende KI-basierte Algorithmus zielt auf Patienten mit Demenz ab (AI for Radiology, o.D.). Die meisten dieser Algorithmen berechnen automatisiert regionale Gehirnvolumina, messen die Cortex-Dicke und liefern quantitative Werte für Läsionen der weißen Substanz, die durch eine zerebrale Mikroangiopathie verursacht sind (AI for Radiology, o.D.).

Es gibt zahlreiche krankheitsspezifische KI-basierte Algorithmen zur Beurteilung der Alzheimer-Demenz (AD). Die AD ist pathologisch durch extrazelluläre β-Amyloid-Plaques und intrazelluläre Tau-haltige Neurofibrillen gekennzeichnet, welche zunehmende amnestische und nicht-amnestische kognitive Beeinträchtigungen zur Folge haben (Knopman et al., 2021). Einige dieser Algorithmen können anhand von MRT-Daten zwischen Patienten mit AD und Personen mit normalen kognitiven Fähigkeiten unterscheiden, wobei die Sensitivitäten im Bereich von 78-99,1 % und die Spezifitäten im Bereich von 70-92,68 % liegen (Battineni et al., 2022). Ein auf nichtlinearen Support Vector Machines basierender Ansatz war in der Lage, mit einer Genauigkeit von 84 % zwischen einer AD und anderen Demenz-Syndromen wie der Frontotemporallappendegeneration zu unterscheiden (Davatzikos et al., 2008).

Vor dem Hintergrund der Annahme, dass therapeutische Interventionen im Prodromalstadium der AD möglicherweise besonders wirksam sind, wurde versucht, den Übergang vom Prodromalstadium der AD auf eine klinische AD vorherzusagen (Crous-Bou et al., 2017).

Der Begriff leichte kognitive Beeinträchtigung (LKB) beschreibt einen Zustand, in dem die Betroffenen ausgeprägtere kognitive Defizite haben als altersgemäß zu erwarten wäre, diese jedoch die Alltagsaktivitäten nicht wesentlich beeinträchtigen (Petersen, 2016). Verschiedene KI-basierte Ansätze wurden verwendet, um den Übergang von einer LKB auf eine AD vorherzusagen, und erzielten dabei eine Genauigkeit von 66-92 % (Amoroso et al., 2018; Bron et al., 2015; Lebedev et al., 2014; G. Lee et al., 2019; Lu et al., 2018; Moradi et al., 2015; Ocasio & Duong, 2021; Salvatore et al., 2015; Spasov et al., 2019).

Auch beim Morbus Parkinson (MP) gilt eine frühe Diagnosestellung als für die wirksame Behandlung wichtig (Pagan, 2012). Der MP ist eine weitere häufige neurodegenerative Erkrankung und pathologisch durch den Untergang von dopaminergen Neuronen in der Substantia nigra gekennzeichnet. Es wird geschätzt, dass zum Zeitpunkt des Auftretens motorischer Symptome, welche dann auf die klinische Diagnose eines MP hinweisen, bereits mehr als 60 % der dopaminergen Neuronen des Gehirns untergegangen sind (GBD 2016 Parkinson’s Disease Collaborators, 2018). Es wurden mehrere auf maschinellem Lernen basierende Ansätze entwickelt, um zwischen Personen mit MP und gesunden Kontrollpersonen zu unterscheiden. Dabei wurden morphologische Merkmale verwendet, welche generiert wurden mittels struktureller MRT (Adeli et al., 2016; Chakraborty et al., 2020; Peng et al., 2017), funktioneller MRT (Long et al., 2012; Pläschke et al., 2017; Tang et al., 2017), Positronenemissionstomographie (PET) (Piccardo et al., 2021) und Single-Photon- Emissionscomputertomographie (SPECT) (Choi et al., 2017; Hirschauer et al., 2015; Ozsahin et al., 2020), häufig in Kombination mit klinischen Scores.

Da die motorischen Symptome bei MP Überschneidungen mit den Symptomen anderer neurologischer Erkrankungen zeigen, lässt sich die Diagnose MP häufig nicht allein auf Grundlage der klinischen Merkmale sichern (Rizzo et al., 2016). Besonders schwierig ist es, einen idiopathischen MP anhand von klinischen Merkmalen von atypischen Parkinson-Syndromen wie der Multisystem-Atrophie und der progressiven supranukleären Parese abzugrenzen (Rizzo et al., 2016). In einer frühen Studie wurde das Potenzial des Neuroimagings für diese Unterscheidung genutzt und Support Vector Machine Learning eingesetzt, um einen idiopathischen MP von anderen Parkinsonismus-Ursachen abzugrenzen. Anhand von Diffusions-Tensor-Bildgebung wurde dabei eine Sensitivität von 94 % und eine Spezifität von 100 % erzielt (Haller et al., 2012). Mehrere weitere Studien zeigten eine hohe Genauigkeit bei der Unterscheidung zwischen einem idiopathischen MP und atypischem Parkinsonismus auf Grundlage von struktureller MRT (Duchesne et al., 2009; Focke et al., 2011; Huppertz et al., 2016; Marquand et al., 2013; Salvatore et al., 2014), suszeptibilitätsgewichteter Bildgebung (Haller et al., 2013) und einer Kombination aus Diffusions-Tensor-Bildgebung und struktureller MRT (Cherubini et al., 2014).

Darüber hinaus wurden Studien durchgeführt, in denen Modelle des maschinellen Lernens zur Unterstützung therapeutischer Entscheidungen bei MP genutzt wurden. Eine Studie mit 67 Patienten mit MP ergab, dass sich anhand von aus der funktionellen MRT extrahierten Merkmalen mit einer Genauigkeit von 88 % optimale von suboptimalen Parametern für eine tiefe Hirnstimulation abgrenzen ließen (Boutet et al., 2021). Dies könnte helfen, den aktuell langen, teuren und umständlichen Prozess der umfangreichen klinischen Testung zur Optimierung von Parametern für die tiefe Hirnstimulation bei Patienten mit MP zu optimieren.

Multiple Sklerose

Die Multiple Sklerose (MS) ist eine häufige Autoimmunkrankheit des Zentralnervensystems, die pathologisch durch eine entzündliche Demyelinisierung gekennzeichnet ist und zu einem breiten Spektrum von neurologischen Manifestationen führt (McGinley et al., 2021). Bei der Diagnosestellung und Behandlung der MS spielt die MRT eine wichtige Rolle. Sie ist auch das bildgebende Verfahren der Wahl für die quantitative Beurteilung und Einteilung von MS-Läsionen im Gehirn und Rückenmark (Matthews et al., 2016). Bildgebende Merkmale sind ein wesentlicher Bestandteil der diagnostischen Merkmale der MS (Thompson et al., 2018), und Leitlinien empfehlen für die Verlaufskontrolle der Patienten und therapeutische Entscheidungen die MRT (Wattjes et al., 2015). Mehrere KI-basierte Algorithmen für die quantitative Beurteilung einer Hirnatrophie und die automatisierte Segmentierung von MS-Läsionen wurden von der FDA freigegeben und erhielten das CE-Zeichen (Cavedo et al., 2022; Qubiotech Neurocloud Vol, 2021; Zaki et al., 2022).

Zahlreiche bei der MS angewendete KI-basierte Algorithmen zielen auf die automatisierte Extraktion von bildgebenden Merkmalen ab (Afzal et al., 2022; Bonacchi et al., 2022; Eichinger et al., 2020; Moazami et al., 2021). Die visuelle Beurteilung des Vorliegens und der Progression von MS-Läsionen über die Zeit spielen für die Diagnosestellung und Verlaufsbeurteilung der MS eine wichtige Rolle, sind jedoch zeitaufwendig und schwierig (Danelakis et al., 2018). An ihrer Stelle wurden mehrere auf herkömmlichem maschinellem Lernen (Brosch et al., 2016; Goldberg-Zimring et al., 1998; Karimian & Jafari, 2015; Samarasekera et al., 1997; Schmidt et al., 2012; S. Zhang et al., 2018) bzw. Deep Learning (Birenbaum & Greenspan, 2017; Deshpande et al., 2015; Roy et al., 2018; Valverde et al., 2017, 2019) basierende Ansätze für die automatisierte Segmentierung von MS-Läsionen entwickelt. Etwa in 30 % dieser Studien wurden CNNs und in 40 % Support-Vector-Machine-Learning-Ansätze eingesetzt (Afzal et al., 2022).

Deep-Learning-Ansätze lieferten Dice-Koeffizienten (ein Maß für die räumliche Überlappung mit einem Wertebereich von 0 bis 1) von 0,52 bis 0,67 gegenüber manuellen Läsions-Segmentierungen (Afzal et al., 2022). Außerdem wurden mehrere KI-basierte Ansätze für die automatisierte quantitative Beurteilung einer Hirnatrophie, die ein weiteres prädiktives Merkmal aus der bildgebenden Diagnostik für das Fortschreiten einer MS ist (Andravizou et al., 2019), untersucht (Dolz et al., 2018; Kushibar et al., 2018; Wachinger et al., 2018).

KI-basierte Algorithmen wurden auch genutzt, um MRT-Anomalien zu identifizieren, die mit dem bloßen Auge nicht deutlich zu erkennen und derzeit nicht Bestandteil der diagnostischen Kriterien der MS sind. Hierzu gehören Anomalien der Hirnvenen und eine Eisenablagerung, nachweisbar mittels suszeptibilitätsgewichteter Bildgebung (Lopatina et al., 2020), sowie Anomalien in Regionen der weißen und grauen Substanz, welche sowohl in konventionellen (Eitel et al., 2019) als auch in weiterentwickelten MRTSequenzen normal aussehen (Neeb & Schenk, 2019; Saccà et al., 2019; Yoo et al., 2018; Zurita et al., 2018).

Für die Diagnosestellung einer MS müssen Erkrankungen mit ähnlichem klinischem Bild ausgeschlossen werden, was jedoch manchmal schwierig ist (Wildner et al., 2020). Unter Verwendung von aus MRT-Aufnahmen extrahierten Merkmalen zeigten Random-Forest- Ansätze und CNNs Genauigkeit bei der Abgrenzung einer MS von Neuromyelitis-Optica-Spektrum- Erkrankungen (Eshaghi et al., 2016; Rocca et al., 2021), nichtentzündlichen Erkrankungen der weißen Substanz (Mangeat et al., 2020; Theocharakis et al., 2009), Migräne (Rocca et al., 2021), einer Vaskulitis des Zentralnervensystems (Rocca et al., 2021) und Hirntumoren (Ekşi et al., 2021).

Die MS wird in mehrere klinische Phänotypen mit jeweils unterschiedlicher Prognose und optimaler Behandlungsstrategie unterteilt (Lublin et al., 2014). Mehrere Studien untersuchten mit Hilfe von Diffusions-Tensor-MRT (Kocevar et al., 2016; Marzullo et al., 2019), Magnetresonanzspektroskopie (Ekşi et al., 2020; Ion-Mărgineanu et al., 2017) und MRTbasierten Atrophie-Beurteilungen (Bonacchi et al., 2020) das Potenzial von KI-basierten Ansätzen zur Unterscheidung zwischen verschiedenen klinischen Phänotypen der MS.

Die Behandlung der MS erfolgt personalisiert auf Grundlage von klinischen, demographischen und bildgebenden prognostischen Markern sowie entsprechenden Laborwerten (Rotstein & Montalban, 2019). Mehrere KI-basierte Algorithmen wurden im Hinblick auf ihre Fähigkeit untersucht, anhand von MRT-Merkmalen den Übergang von der ersten, auf eine chronisch-entzündliche Erkrankung des ZNS hinweisenden klinischen Episode, auch „klinisch isoliertes Syndrom“ genannt, auf eine gesicherte MS vorherzusagen und erzielten dabei Sensitivitäten von 64-77 % und Spezifitäten von 66-78 % (Bendfeldt et al., 2019; Wottschel et al., 2015, 2019). Zudem wurden auch KI-basierte Algorithmen entwickelt, welche klinische und MRT-Daten kombinieren, um den weiteren Verlauf der Erkrankung und klinische Beeinträchtigungen zu prognostizieren (Filippi et al., 2013; Roca et al., 2020; Tommasin et al., 2021; Zhao et al., 2017, 2020). Eine Studie fand bei Anwendung von Support Vector Machines und enem extrem Random Forest Modell, dass ein hochdimensionaler, aus T1-gewichteten Bildern und FLAIR-Sequenzen generierter „Fingerabdruck“ besser in der Lage war, das Ansprechen auf eine MS-Therapie vorherzusagen, als aus konventionellen MRT-Aufnahmen generierte Messwerte für das Ansprechen auf die Behandlung, wie das Gehirnvolumen und Anzahl und Volumina von Läsionen (AUC 0,89 vs. 0,69) (Kanber et al., 2019).

Darüber hinaus zeigten KI-basierte Algorithmen ein Potenzial, bei MS verwendete MRT-Protokolle zu unterstützen. Dies umfasst die Extraktion von Informationen aus konventionellen MRT-Sequenzen mit Generierung synthetischer Sequenzen aus gewonnenen Aufnahmen, wie beispielsweise die Generierung von kontrastverstärkten Aufnahmen aus einer MRT ohne Kontrastmittelgabe (Bonacchi et al., 2022).

Neuroonkologie

Fazit

Die Forschung zu KI-Anwendungen in der Neuroradiologie hat in den letzten 10 Jahren bemerkenswerte Fortschritte gemacht. Besonders nützlich erwies sich eine unterstützende Anwendung von KI bei der Diagnostik von Erkrankungen wie Schlaganfällen und intrakraniellen Hämorrhagien, bei denen eine frühzeitige Diagnosestellung entscheidend ist. Darüber hinaus gibt es immer mehr Evidenz dafür, dass KI zur Verlaufsbeurteilung der Progression neurologischer Erkrankungen und Prognose des weiteren Verlaufs genutzt werden könnte und schließlich vermehrt personalisierte und wirksamere Behandlungsstrategien ermöglichen würde. Die Forschung zu KI-basierten Algorithmen sollte künftig durch Untersuchungen zur Kosteneffektivität dieser Anwendungen und durch eine Beurteilung der Auswirkungen ihrer Implementation auf das Gesamtergebnis beim Patienten ergänzt werden. Darüber hinaus sollten mehr Daten zur Leistungsfähigkeit dieser Anwendungen publiziert werden, um ihre Nutzung zu fördern. Insgesamt ist die Anwendung von KI im Rahmen der Neuroradiologie sehr vielversprechend und gibt Grund zu der Hoffnung, dass sich dadurch die Qualität der Patientenversorgung verbessern lässt.

Literatur 

Abdelkhaleq, R., Kim, Y., Khose, S., Kan, P., Salazar-Marioni, S., Giancardo, L., & Sheth, S. A. (2021). Automated prediction of final infarct volume in patients with large-vessel occlusion acute ischemic stroke. Neurosurgical Focus, 51(1), E13. https://doi.org/10.3171/2021.4.FOCUS21134

Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028

Adeli, E., Shi, F., An, L., Wee, C.-Y., Wu, G., Wang, T., & Shen, D. (2016). Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage, 141, 206–219. https://doi.org/10.1016/j.neuroimage.2016.05.054

Adhya, J., Li, C., Eisenmenger, L., Cerejo, R., Tayal, A., Goldberg, M., & Chang, W. (2021). Positive predictive value and stroke workflow outcomes using automated vessel density (RAPID-CTA) in stroke patients: One year experience. The Neuroradiology Journal, 34(5), 476–481. https://doi.org/10.1177/19714009211012353

Adusumilli, G., Pederson, J. M., Hardy, N., Kallmes, K. M., Hutchison, K., Kobeissi, H., Heiferman, D. M., & Heit, J. J. (2022). Mechanical thrombectomy in anterior vs. posterior circulation stroke: A systematic review and meta-analysis. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 15910199221100796. https://doi. org/10.1177/15910199221100796

Afzal, H. M. R., Luo, S., Ramadan, S., & Lechner-Scott, J. (2022). The emerging role of artificial intelligence in multiple sclerosis imaging. Multiple Sclerosis, 28(6), 849–858.  https://doi.org/10.1177/1352458520966298

AI Central. (n.d.). Retrieved July 2, 2022, from https://aicentral.com/

AI for radiology(n.d.). Retrieved July 2, 2022, from https://grand-challenge.org/aiforradiology/

Akbari, H., Macyszyn, L., Da, X., Bilello, M., Wolf, R. L., Martinez-Lage, M., Biros, G., Alonso-Basanta, M., O’Rourke, D. M., & Davatzikos, C. (2016). Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery, 78(4), 572–580. https://doi.org/10.1227/NEU.0000000000001202

Akkus, Z., Ali, I., Sedlář, J., Agrawal, J. P., Parney, I. F., Giannini, C., & Erickson, B. J. (2017). Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. Journal of Digital Imaging, 30(4), 469–476. https://doi.org/10.1007/s10278-017-9984-3

Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., Guaragnella, C., Bellotti, R., Tangaro, S., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods, 302, 3–9. https://doi.org/10.1016/j. jneumeth.2017.12.011

Amukotuwa, S. A., Straka, M., Smith, H., Chandra, R. V., Dehkharghani, S., Fischbein, N. J., & Bammer, R. (2019). Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience. Stroke; a Journal of Cerebral Circulation, 50(10), 2790–2798. https://doi.org/10.1161/STROKEAHA.119.026259

Andravizou, A., Dardiotis, E., Artemiadis, A., Sokratous, M., Siokas, V., Tsouris, Z., Aloizou, A.-M., Nikolaidis, I., Bakirtzis, C., Tsivgoulis, G., Deretzi, G., Grigoriadis, N., Bogdanos, D. P., & Hadjigeorgiou, G. M. (2019). Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Auto- Immunity Highlights, 10(1), 7. https://doi.org/10.1186/ s13317-019-0117-5

Bahar, R. C., Merkaj, S., Cassinelli Petersen, G. I., Tillmanns, N., Subramanian, H., Brim, W. R., Zeevi, T., Staib, L., Kazarian, E., Lin, M., Bousabarah, K., Huttner, A. J., Pala, A., Payabvash, S., Ivanidze, J., Cui, J., Malhotra, A., & Aboian, M. S. (2022). Machine Learning Models for Classifying Highand Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers in Oncology, 12, 856231. https://doi.org/10.3389/fonc.2022.856231

Bar, A., Mauda, M., Turner, Y., Safadi, M., & Elnekave, E. (2019). Improved ICH classification using task-dependent learning. In arXiv [cs.CV]. arXiv. https://uploads-ssl.webflow. com/602a32732226833dce680ffe/61733c14eabf6d96471c5 2b4_7-Bar_bloodNet__Improved_ICH_classification_using_task_ dependent_learning__isbi2018.pdf

Battineni, G., Chintalapudi, N., Hossain, M. A., Losco, G., Ruocco, C., Sagaro, G. G., Traini, E., Nittari, G., & Amenta, F. (2022). Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering (Basel, Switzerland), 9(8). https://doi.org/10.3390/ bioengineering9080370

Bendfeldt, K., Taschler, B., Gaetano, L., Madoerin, P., Kuster, P., Mueller-Lenke, N., Amann, M., Vrenken, H., Wottschel, V., Barkhof, F., Borgwardt, S., Klöppel, S., Wicklein, E.- M., Kappos, L., Edan, G., Freedman, M. S., Montalbán, X., Hartung, H.-P., Pohl, C., … Nichols, T. E. (2019). MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging and Behavior, 13(5), 1361–1374. https://doi.org/10.1007/s11682-018-9942-9

BioMind. (n.d.). Retrieved December 20, 2022, from https://biomind.ai/paper

Birenbaum, A., & Greenspan, H. (2017). Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Engineering Applications of Artificial Intelligence, 65, 111–118. https://doi.org/10.1016/j.engappai.2017.06.006

Boldsen, J. K., Engedal, T. S., Pedraza, S., Cho, T.-H., Thomalla, G., Nighoghossian, N., Baron, J.-C., Fiehler, J., Østergaard, L., & Mouridsen, K. (2018). Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation. Frontiers in Neuroinformatics, 12, 21. https://doi.org/10.3389/fninf.2018.00021

Bonacchi, R., Filippi, M., & Rocca, M. A. (2022). Role of artificial intelligence in MS clinical practice. NeuroImage. Clinical, 35, 103065. https://doi.org/10.1016/j.nicl.2022.103065

Bonacchi, R., Pagani, E., Meani, A., Cacciaguerra, L., Preziosa, P., De Meo, E., Filippi, M., & Rocca, M. A. (2020). Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis. Radiology, 296(3), 605–615. https://doi.org/10.1148/radiol.2020200430

Boutet, A., Madhavan, R., Elias, G. J. B., Joel, S. E., Gramer, R., Ranjan, M., Paramanandam, V., Xu, D., Germann, J., Loh, A., Kalia, S. K., Hodaie, M., Li, B., Prasad, S., Coblentz, A., Munhoz, R. P., Ashe, J., Kucharczyk, W., Fasano, A., & Lozano, A. M. (2021). Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nature Communications, 12(1), 3043. https://doi.org/10.1038/s41467-021-23311-9

Broderick, J., Connolly, S., Feldmann, E., Hanley, D., Kase, C., Krieger, D., Mayberg, M., Morgenstern, L., Ogilvy, C. S., Vespa, P., Zuccarello, M., American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, & Quality of Care and Outcomes in Research Interdisciplinary Working Group. (2007). Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke; a Journal of Cerebral Circulation, 38(6), 2001–2023. https://doi.org/10.1161/STROKEAHA.107.183689

Bron, E. E., Smits, M., Niessen, W. J., & Klein, S. (2015). Feature Selection Based on the SVM Weight Vector for Classification of Dementia. IEEE Journal of Biomedical and Health Informatics, 19(5), 1617–1626. https://doi.org/10.1109/ JBHI.2015.2432832

Brosch, T., Tang, L. Y. W., Youngjin Yoo, Li, D. K. B., Traboulsee, A., & Tam, R. (2016). Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE Transactions on Medical Imaging, 35(5), 1229–1239. https://doi.org/10.1109/TMI.2016.2528821

Cacciaguerra, L., Meani, A., Mesaros, S., Radaelli, M., Palace, J., Dujmovic-Basuroski, I., Pagani, E., Martinelli, V., Matthews, L., Drulovic, J., Leite, M. I., Comi, G., Filippi, M., & Rocca, M. A. (2019). Brain and cord imaging features in neuromyelitis optica spectrum disorders. Annals of Neurology, 85(3), 371–384. https://doi.org/10.1002/ana.25411

Cavedo, E., Tran, P., Thoprakarn, U., Martini, J.-B., Movschin, A., Delmaire, C., Gariel, F., Heidelberg, D., Pyatigorskaya, N., Ströer, S., Krolak-Salmon, P., Cotton, F., Dos Santos, C. L., & Dormont, D. (2022). Validation of an automatic tool for the rapid measurement of brain atrophy and white matter hyperintensity: QyScore®. European Radiology, 32(5), 2949–2961. https://doi.org/10.1007/s00330-021-08385-9

Chakraborty, S., Aich, S., & Kim, H.-C. (2020). Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network. Diagnostics, 10(6), 402. https://doi.org/10.3390/diagnostics10060402

Chalela, J. A., Kidwell, C. S., Nentwich, L. M., Luby, M., Butman, J. A., Demchuk, A. M., Hill, M. D., Patronas, N., Latour, L., & Warach, S. (2007). Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. The Lancet, 369(9558), 293–298. https://doi.org/10.1016/S0140- 6736(07)60151-2

Chang, P. D., Chow, D. S., Yang, P. H., Filippi, C. G., & Lignelli, A. (2017). Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. AJR. American Journal of Roentgenology, 208(1), 57–65. https://doi.org/10.2214/AJR.16.16234

Chang, P. D., Malone, H. R., Bowden, S. G., Chow, D. S., Gill, B. J. A., Ung, T. H., Samanamud, J., Englander, Z. K., Sonabend, A. M., Sheth, S. A., McKhann, G. M., 2nd, Sisti, M. B., Schwartz, L. H., Lignelli, A., Grinband, J., Bruce, J. N., & Canoll, P. (2017). A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. AJNR. American Journal of Neuroradiology, 38(5), 890–898. https://doi.org/10.3174/ajnr.A5112

Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., Su, M.-Y., Cha, S., Filippi, C. G., Bota, D., Baldi, P., Poisson, L. M., Jain, R., & Chow, D. (2018). Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR. American Journal of Neuroradiology, 39(7), 1201–1207. https://doi.org/10.3174/ajnr.A5667

Cherubini, A., Morelli, M., Nisticó, R., Salsone, M., Arabia, G., Vasta, R., Augimeri, A., Caligiuri, M. E., & Quattrone, A. (2014). Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Movement Disorders: Official Journal of the Movement Disorder Society, 29(2), 266–269. https://doi.org/10.1002/mds.25737

Chien, H.-W. C., Yang, T.-L., Juang, W.-C., Chen, Y.-Y. A., Li, Y.-C. J., & Chen, C.-Y. (2022). Pilot Report for Intracranial Hemorrhage Detection with Deep Learning Implanted Head Computed Tomography Images at Emergency Department. Journal of Medical Systems, 46(7), 49. https://doi.org/10.1007/ s10916-022-01833-z

Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., Mahajan, V., Rao, P., & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet, 392(10162), 2388–2396. https://doi.org/10.1016/S0140- 6736(18)31645-3

Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017). Refining diagnosis of Parkinson’s disease with deep learningbased interpretation of dopamine transporter imaging. NeuroImage. Clinical, 16, 586–594. https://doi.org/10.1016/j. nicl.2017.09.010

Connor, S. E. J., Tan, G., Fernando, R., & Chaudhury, N. (2005). Computed tomography pseudofractures of the mid face and skull base. Clinical Radiology, 60(12), 1268–1279. https://doi. org/10.1016/j.crad.2005.05.016

Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Research & Therapy, 9(1), 1–9. https://doi.org/10.1186/s13195-017-0297-z

Danelakis, A., Theoharis, T., & Verganelakis, D. A. (2018). Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 70, 83–100. https://doi.org/10.1016/j.compmedimag.2018.10.002

Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. M. (2008). Individual patient diagnosis of AD and FTD via highdimensional pattern classification of MRI. NeuroImage, 41(4), 1220–1227. https://doi.org/10.1016/j.neuroimage.2008.03.050

Dehkharghani, S., Lansberg, M., Venkatsubramanian, C., Cereda, C., Lima, F., Coelho, H., Rocha, F., Qureshi, A., Haerian, H., Mont’Alverne, F., Copeland, K., & Heit, J. (2021). High-Performance Automated Anterior Circulation CT Angiographic Clot Detection in Acute Stroke: A Multireader Comparison. Radiology, 298(3), 665–670. https://doi.org/10.1148/radiol.2021202734

Deshpande, H., Maurel, P., & Barillot, C. (2015). Classification of multiple sclerosis lesions using adaptive dictionary learning. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 46 Pt 1 , 2–10. https://doi.org/10.1016/j.compmedimag.2015.05.003

Dolz, J., Desrosiers, C., & Ben Ayed, I. (2018). 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. NeuroImage, 170 , 456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

Duchesne, S., Rolland, Y., & Vérin, M. (2009). Automated computer differential classification in Parkinsonian Syndromes via pattern analysis on MRI. Academic Radiology, 16(1), 61–70. https://doi.org/10.1016/j.acra.2008.05.024

Duvekot, M. H. C., van Es, A. C. G. M., Venema, E., Wolff, L., Rozeman, A. D., Moudrous, W., Vermeij, F. H., Lingsma, H. F., Bakker, J., Plaisier, A. S., Hensen, J.-H. J., Lycklama à Nijeholt, G. J., Jan van Doormaal, P., Dippel, D. W. J., Kerkhoff, H., Roozenbeek, B., & van der Lugt, A. (2021). Accuracy of CTA evaluations in daily clinical practice for large and medium vessel occlusion detection in suspected stroke patients. European Stroke Journal, 23969873211058576. https:// doi.org/10.1177/23969873211058576

Ebinger, M., Galinovic, I., Rozanski, M., Brunecker, P., Endres, M., & Fiebach, J. B. (2010). Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke; a Journal of Cerebral Circulation, 41(2), 250–255. https://doi.org/10.1161/STROKEAHA.109.568410

Eichinger, P., Zimmer, C., & Wiestler, B. (2020). AI in Radiology: Where are we today in Multiple Sclerosis Imaging? RoFo: Fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin, 192(9), 847–853. https://doi.org/10.1055/a-1167-8402

Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., Kuchling, J., Asseyer, S., Weygandt, M., Haynes, J.-D., Scheel, M., Paul, F., & Ritter, K. (2019). Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layerwise relevance propagation. NeuroImage. Clinical, 24, 102003. https://doi.org/10.1016/j.nicl.2019.102003

EkŞİ, Z., ÇakiroĞlu, M., Öz, C., AralaŞmak, A., Karadelİ, H. H., & Özcan, M. E. (2020). Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning. Arquivos de Neuro-Psiquiatria, 78(12), 789–796. https://doi. org/10.1590/0004-282X20200094

Ekşi, Z., Özcan, M. E., Çakıroğlu, M., Öz, C., & Aralaşmak, A. (2021). Differentiation of multiple sclerosis lesions and lowgrade brain tumors on MRS data: machine learning approaches. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(8), 3389–3395. https://doi.org/10.1007/s10072-020-04950-0

Eldaya, R. W., Kansagra, A. P., Zei, M., Mason, E., Holder, D., Heitsch, L., Vo, K. D., & Goyal, M. S. (2022). Performance of Automated RAPID Intracranial Hemorrhage Detection in Real-World Practice: A Single-Institution Experience. Journal of Computer Assisted Tomography, 46(5), 770–774. https://doi.org/10.1097/RCT.0000000000001335

Emon, M. M., Ornob, T. R., & Rahman, M. (2022). Classifications of Skull Fractures using CT Scan Images via CNN with Lazy Learning Approach. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2203.10786

Erly, W. K., Berger, W. G., Krupinski, E., Seeger, J. F., & Guisto, J. A. (2002). Radiology resident evaluation of head CT scan orders in the emergency department. AJNR. American Journal of Neuroradiology, 23 (1), 103–107. https://www.ncbi.nlm.nih.gov/ pubmed/11827881

Eshaghi, A., Wottschel, V., Cortese, R., Calabrese, M., Sahraian, M. A., Thompson, A. J., Alexander, D. C., & Ciccarelli, O. (2016). Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 87(23), 2463–2470. https://doi.org/10.1212/ WNL.0000000000003395

Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: translating evidence into policy. Lancet Neurology, 19(3), 255–265. https://doi.org/10.1016/S1474-4422(19)30411-9

Ferreti, L. A., Leitao, C. A., Teixeira, B. C. de A., Lopes Neto, F. D. N., ZÉtola, V. F., & Lange, M. C. (2020). The use of e-ASPECTS in acute stroke care: validation of method performance compared to the performance of specialists. Arquivos de Neuro- Psiquiatria, 78(12), 757–761. https://doi.org/10.1590/0004- 282X20200072

Filippi, M., Preziosa, P., Copetti, M., Riccitelli, G., Horsfield, M. A., Martinelli, V., Comi, G., & Rocca, M. A. (2013). Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology, 81(20), 1759–1767. https://doi.org/10.1212/01.wnl.0000435551.90824.d0

Flacke, S., Urbach, H., Keller, E., Träber, F., Hartmann, A., Textor, J., Gieseke, J., Block, W., Folkers, P. J., & Schild, H. H. (2000). Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology, 215(2), 476–482. https://doi.org/10.1148/ radiology.215.2.r00ma09476

Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P., Ebentheuer, J., Mohr, A., Paulus, W., & Trenkwalder, C. (2011). Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Human Brain Mapping, 32(11), 1905–1915. https://doi.org/10.1002/hbm.21161

Fugate, J. E., & Rabinstein, A. A. (2015). Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke. The Neurohospitalist, 5(3), 110–121. https://doi. org/10.1177/1941874415578532

Gács, G., Fox, A. J., Barnett, H. J., & Vinuela, F. (1983). CT visualization of intracranial arterial thromboembolism. Stroke; a Journal of Cerebral Circulation, 14(5), 756–762. https://doi. org/10.1161/01.str.14.5.756

GBD 2016 Parkinson’s Disease Collaborators. (2018). Global, regional, and national burden of Parkinson’s disease, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 17(11), 939–953. https://doi. org/10.1016/S1474-4422(18)30295-3

Gibson, E., Georgescu, B., Ceccaldi, P., Trigan, P.-H., Yoo, Y., Das, J., Re, T. J., Rs, V., Balachandran, A., Eibenberger, E., Chekkoury, A., Brehm, B., Bodanapally, U. K., Nicolaou, S., Sanelli, P. C., Schroeppel, T. J., Flohr, T., Comaniciu, D., & Lui, Y. W. (2022). Artificial Intelligence with Statistical Confidence Scores for Detection of Acute or Subacute Hemorrhage on Noncontrast CT Head Scans. Radiology. Artificial Intelligence, 4(3), e210115. https://doi.org/10.1148/ryai.210115

Ginat, D. (2021). Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection of Intracranial Hemorrhage on CT. Brain Sciences, 11(7). https://doi.org/10.3390/brainsci11070832

Goebel, J., Stenzel, E., Guberina, N., Wanke, I., Koehrmann, M., Kleinschnitz, C., Umutlu, L., Forsting, M., Moenninghoff, C., & Radbruch, A. (2018). Automated ASPECT rating: comparison between the Frontier ASPECT Score software and the Brainomix software. Neuroradiology, 60(12), 1267–1272. https://doi.org/10.1007/s00234-018-2098-x

Goldberg-Zimring, D., Achiron, A., Miron, S., Faibel, M., & Azhari, H. (1998). Automated detection and characterization of multiple sclerosis lesions in brain MR images. Magnetic Resonance Imaging, 16(3), 311–318. https://doi.org/10.1016/ s0730-725x(97)00300-7

Guberina, N., Dietrich, U., Radbruch, A., Goebel, J., Deuschl, C., Ringelstein, A., Köhrmann, M., Kleinschnitz, C., Forsting, M., & Mönninghoff, C. (2018). Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology, 60(9), 889–901. https://doi.org/10.1007/ s00234-018-2066-5

Hakim, A., Christensen, S., Winzeck, S., Lansberg, M. G., Parsons, M. W., Lucas, C., Robben, D., Wiest, R., Reyes, M., & Zaharchuk, G. (2021). Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Stroke; a Journal of Cerebral Circulation, 52(7), 2328–2337. https://doi.org/10.1161/STROKEAHA.120.030696

Haller, S., Badoud, S., Nguyen, D., Barnaure, I., Montandon, M.-L., Lovblad, K.-O., & Burkhard, P. R. (2013). Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibilityweighted imaging (SWI): initial results. European Radiology, 23(1), 12–19. https://doi.org/10.1007/s00330-012-2579-y

Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K. O., & Burkhard, P. R. (2012). Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR. American Journal of Neuroradiology, 33(11), 2123–2128. https://doi.org/10.3174/ajnr.A3126

Han, L., & Kamdar, M. R. (2018). MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 23, 331–342. https://www.ncbi.nlm.nih.gov/pubmed/29218894

Han, Y., Yang, Y., Shi, Z.-S., Zhang, A.-D., Yan, L.-F., Hu, Y.-C., Feng, L.-L., Ma, J., Wang, W., & Cui, G.-B. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/10.1016/j.ejrad.2020.109467

Hassan, A. E., Ringheanu, V. M., Rabah, R. R., Preston, L., Tekle, W. G., & Qureshi, A. I. (2020). Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 26(5), 615–622. https://doi.org/10.1177/1591019920953055

Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., & Larochelle, H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical Image Analysis, 35, 18–31. https://doi.org/10.1016/j.media.2016.05.004

Heimer, J., Thali, M. J., & Ebert, L. (2018). Classification based on the presence of skull fractures on curved maximum intensity skull projections by means of deep learning. Journal of Forensic Radiology and Imaging, 14, 16–20. https://doi.org/10.1016/j. jofri.2018.08.001

Heit, J. J., Coelho, H., Lima, F. O., Granja, M., Aghaebrahim, A., Hanel, R., Kwok, K., Haerian, H., Cereda, C. W., Venkatasubramanian, C., Dehkharghani, S., Carbonera, L. A., Wiener, J., Copeland, K., & Mont’Alverne, F. (2021). Automated Cerebral Hemorrhage Detection Using RAPID. AJNR. American Journal of Neuroradiology, 42(2), 273–278. https://doi.org/10.3174/ajnr.A6926

Herweh, C., Ringleb, P. A., Rauch, G., Gerry, S., Behrens, L., Möhlenbruch, M., Gottorf, R., Richter, D., Schieber, S., & Nagel, S. (2016). Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 11(4), 438–445. https://doi.org/10.1177/1747493016632244

Hirschauer, T. J., Adeli, H., & Buford, J. A. (2015). Computer- Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network. Journal of Medical Systems, 39(11), 179. https://doi.org/10.1007/s10916-015-0353-9

Hitziger, S., Ling, W. X., Fritz, T., D’Albis, T., Lemke, A., & Grilo, J. (2022). Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies. Frontiers in Neuroscience, 16, 964250. https://doi.org/10.3389/ fnins.2022.964250

Hoelter, P., Muehlen, I., Goelitz, P., Beuscher, V., Schwab, S., & Doerfler, A. (2020). Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools. Neuroradiology, 62(10), 1231–1238. https://doi.org/10.1007/ s00234-020-02439-3

Hu, L. S., Ning, S., Eschbacher, J. M., Baxter, L. C., Gaw, N., Ranjbar, S., Plasencia, J., Dueck, A. C., Peng, S., Smith, K. A., Nakaji, P., Karis, J. P., Quarles, C. C., Wu, T., Loftus, J. C., Jenkins, R. B., Sicotte, H., Kollmeyer, T. M., O’Neill, B. P., … Mitchell, J. R. (2017). Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology, 19(1), 128–137. https://doi.org/10.1093/neuonc/now135

Huppertz, H.-J., Möller, L., Südmeyer, M., Hilker, R., Hattingen, E., Egger, K., Amtage, F., Respondek, G., Stamelou, M., Schnitzler, A., Pinkhardt, E. H., Oertel, W. H., Knake, S., Kassubek, J., & Höglinger, G. U. (2016). Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Movement Disorders: Official Journal of the Movement Disorder Society, 31(10), 1506– 1517. https://doi.org/10.1002/mds.26715

Hwang, D. Y., Silva, G. S., Furie, K. L., & Greer, D. M. (2012). Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. The Journal of Emergency Medicine, 42(5), 559–565. https://doi. org/10.1016/j.jemermed.2011.05.101

Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D. M., Durand-Dubief, F., Van Huffel, S., & Sappey-Marinier, D. (2017). Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features. Frontiers in Neuroscience, 11, 398. https://doi.org/10.3389/fnins.2017.00398

Jain, A., Malhotra, A., & Payabvash, S. (2021). Imaging of Spontaneous Intracerebral Hemorrhage. Neuroimaging Clinics of North America, 31(2), 193–203. https://doi.org/10.1016/j. nic.2021.02.003

Jain, S., Ribbens, A., Sima, D. M., Cambron, M., De Keyser, J., Wang, C., Barnett, M. H., Van Huffel, S., Maes, F., & Smeets, D. (2016). Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework. Frontiers in Neuroscience, 10, 576. https://doi.org/10.3389/fnins.2016.00576

Jang, B.-S., Jeon, S. H., Kim, I. H., & Kim, I. A. (2018). Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma. Scientific Reports, 8(1), 12516. https://doi.org/10.1038/s41598-018-31007-2

Jang, B.-S., Park, A. J., Jeon, S. H., Kim, I. H., Lim, D. H., Park, S.-H., Lee, J. H., Chang, J. H., Cho, K. H., Kim, J. H., Sunwoo, L., Choi, S. H., & Kim, I. A. (2020). Machine Learning Model to Predict Pseudoprogression Versus Progression in Glioblastoma Using MRI: A Multi-Institutional Study (KROG 18-07). Cancers, 12(9). https://doi.org/10.3390/cancers12092706

Jayachandran Preetha, C., Meredig, H., Brugnara, G., Mahmutoglu, M. A., Foltyn, M., Isensee, F., Kessler, T., Pflüger, I., Schell, M., Neuberger, U., Petersen, J., Wick, A., Heiland, S., Debus, J., Platten, M., Idbaih, A., Brandes, A. A., Winkler, F., van den Bent, M. J., … Vollmuth, P. (2021). Deeplearning- based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. The Lancet. Digital Health, 3(12), e784–e794. https://doi.org/10.1016/S2589-7500(21)00205-3

Jiang, L., Wang, S., Ai, Z., Shen, T., Zhang, H., Duan, S., Chen, Y.-C., Yin, X., & Sun, J. (2022). Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. European Radiology, 32(6), 3661–3669. https://doi.org/10.1007/s00330-021-08493-6

Kanber, B., Nachev, P., Barkhof, F., Calvi, A., Cardoso, J., Cortese, R., Prados, F., Sudre, C. H., Tur, C., Ourselin, S., & Ciccarelli, O. (2019). High-dimensional detection of imaging response to treatment in multiple sclerosis. NPJ Digital Medicine, 2, 49. https://doi.org/10.1038/s41746-019-0127-8

Karimian, A., & Jafari, S. (2015). A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images. Journal of Medical Signals and Sensors, 5(4), 238–244. https:// www.ncbi.nlm.nih.gov/pubmed/26955567

Kickingereder, P., Bonekamp, D., Nowosielski, M., Kratz, A., Sill, M., Burth, S., Wick, A., Eidel, O., Schlemmer, H.-P., Radbruch, A., Debus, J., Herold-Mende, C., Unterberg, A., Jones, D., Pfister, S., Wick, W., von Deimling, A., Bendszus, M., & Capper, D. (2016). Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology, 281(3), 907–918. https://doi. org/10.1148/radiol.2016161382

Kickingereder, P., Isensee, F., Tursunova, I., Petersen, J., Neuberger, U., Bonekamp, D., Brugnara, G., Schell, M., Kessler, T., Foltyn, M., Harting, I., Sahm, F., Prager, M., Nowosielski, M., Wick, A., Nolden, M., Radbruch, A., Debus, J., Schlemmer, H.-P., … Maier-Hein, K. H. (2019). Automated quantitative tumour response assessment of MRI in neurooncology with artificial neural networks: a multicentre, retrospective study. The Lancet Oncology, 20(5), 728–740. https://doi.org/10.1016/S1470-2045(19)30098-1

Kim, B. J., Kim, Y.-H., Kim, Y.-J., Ahn, S. H., Lee, D. H., Kwon, S. U., Kim, S. J., Kim, J. S., & Kang, D.-W. (2014). Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions. Stroke; a Journal of Cerebral Circulation, 45(9), 2801–2804. https://doi.org/10.1161/STROKEAHA.114.006515

Kim, J. Y., Park, J. E., Jo, Y., Shim, W. H., Nam, S. J., Kim, J. H., Yoo, R.-E., Choi, S. H., & Kim, H. S. (2019). Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology, 21(3), 404–414. https://doi.org/10.1093/neuonc/noy133

Kim, M., Kim, H. S., Kim, H. J., Park, J. E., Park, S. Y., Kim, Y.- H., Kim, S. J., Lee, J., & Lebel, M. R. (2021). Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology, 298(1), 114–122. https://doi.org/10.1148/radiol.2020200723

Kniep, H. C., Madesta, F., Schneider, T., Hanning, U., Schönfeld, M. H., Schön, G., Fiehler, J., Gauer, T., Werner, R., & Gellissen, S. (2019). Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology, 290(2), 479–487. https://doi.org/10.1148/radiol.2018180946

Kniep, H. C., Sporns, P. B., Broocks, G., Kemmling, A., Nawabi, J., Rusche, T., Fiehler, J., & Hanning, U. (2020). Posterior circulation stroke: machine learning-based detection of early ischemic changes in acute non-contrast CT scans. Journal of Neurology, 267(9), 2632–2641. https://doi. org/10.1007/s00415-020-09859-4

Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews. Disease Primers, 7(1), 33. https://doi.org/10.1038/s41572-021-00269-y

Kocevar, G., Stamile, C., Hannoun, S., Cotton, F., Vukusic, S., Durand-Dubief, F., & Sappey-Marinier, D. (2016). Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses. Frontiers in Neuroscience, 10, 478. https://doi.org/10.3389/fnins.2016.00478

Kouli, O., Hassane, A., Badran, D., Kouli, T., Hossain-Ibrahim, K., & Steele, J. D. (2022). Automated brain tumor identification using magnetic resonance imaging: A systematic review and meta-analysis. Neuro-Oncology Advances, 4(1), vdac081. https:// doi.org/10.1093/noajnl/vdac081

Kuang, H., Najm, M., Chakraborty, D., Maraj, N., Sohn, S. I., Goyal, M., Hill, M. D., Demchuk, A. M., Menon, B. K., & Qiu, W. (2019). Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning. AJNR. American Journal of Neuroradiology, 40(1), 33–38. https://doi.org/10.3174/ajnr.A5889

Kuang, Z., Deng, X., Yu, L., Zhang, H., Lin, X., & Ma, H. (2020). Skull R-CNN: A CNN-based network for the skull fracture detection. In T. Arbel, I. Ben Ayed, M. de Bruijne, M. Descoteaux, H. Lombaert, & C. Pal (Eds.), Proceedings of the Third Conference on Medical Imaging with Deep Learning (Vol. 121, pp. 382–392). PMLR. https://proceedings.mlr.press/v121/kuang20a.html

Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M., Oliver, A., & Lladó, X. (2018). Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Medical Image Analysis, 48, 177–186. https://doi.org/10.1016/j.media.2018.06.006

Lamptey, R. N. L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., & Singh, J. (2022). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ ijms23031851

Leao, D. J., Craig, P. G., Godoy, L. F., Leite, C. C., & Policeni, B. (2020). Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR. American Journal of Neuroradiology, 41(1), 10–20. https://doi.org/10.3174/ajnr.A6358

Lebedev, A. V., Westman, E., Van Westen, G. J. P., Kramberger, M. G., Lundervold, A., Aarsland, D., Soininen, H., Kłoszewska, I., Mecocci, P., Tsolaki, M., Vellas, B., Lovestone, S., Simmons, A., & Alzheimer’s Disease Neuroimaging Initiative and the AddNeuroMed consortium. (2014). Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage. Clinical, 6, 115–125. https://doi.org/10.1016/j. nicl.2014.08.023

Lee, D. H., Park, J. E., Nam, Y. K., Lee, J., Kim, S., Kim, Y.-H., & Kim, H. S. (2021). Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Scientific Reports, 11(1), 21302. https://doi.org/10.1038/s41598-021-00558-2

Lee, G., Nho, K., Kang, B., Sohn, K.-A., Kim, D., & for Alzheimer’s Disease Neuroimaging Initiative. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952. https://doi.org/10.1038/s41598-018-37769-z

Lee, H., Lee, E.-J., Ham, S., Lee, H.-B., Lee, J. S., Kwon, S. U., Kim, J. S., Kim, N., & Kang, D.-W. (2020). Machine Learning Approach to Identify Stroke Within 4.5 Hours. Stroke; a Journal of Cerebral Circulation, 51(3), 860–866. https://doi.org/10.1161/ STROKEAHA.119.027611

Lisowska, A., O’Neil, A., Dilys, V., Daykin, M., Beveridge, E., Muir, K., Mclaughlin, S., & Poole, I. (2017). Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Noncontrast CT Scans. Medical Image Understanding and Analysis, 494–505. https://doi.org/10.1007/978-3-319-60964-5_43

Long, D., Wang, J., Xuan, M., Gu, Q., Xu, X., Kong, D., & Zhang, M. (2012). Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PloS One, 7(11), e47714. https://doi.org/10.1371/journal.pone.0047714

Lopatina, A., Ropele, S., Sibgatulin, R., Reichenbach, J. R., & Güllmar, D. (2020). Investigation of Deep-Learning- Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis. Frontiers in Neuroscience, 14, 609468. https://doi.org/10.3389/ fnins.2020.609468

Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., Barkhof, F., Bebo, B., Jr, Calabresi, P. A., Clanet, M., Comi, G., Fox, R. J., Freedman, M. S., Goodman, A. D., Inglese, M., Kappos, L., … Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology, 83(3), 278–286. https://doi.org/10.1212/ WNL.0000000000000560

Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images. Scientific Reports, 8(1), 5697. https://doi. org/10.1038/s41598-018-22871-z

Mackey J, Kleindorfer D, Sucharew H, et al. Population-based study of wake-up strokes. Neurology. 2011;76(19):1662-1667. doi:10.1212/WNL.0b013e318219fb30

Maegerlein, C., Fischer, J., Mönch, S., Berndt, M., Wunderlich, S., Seifert, C. L., Lehm, M., Boeckh-Behrens, T., Zimmer, C., & Friedrich, B. (2019). Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability. Radiology, 291(1), 141–148. https://doi.org/10.1148/ radiol.2019181228

Mangeat, G., Ouellette, R., Wabartha, M., De Leener, B., Plattén, M., Danylaité Karrenbauer, V., Warntjes, M., Stikov, N., Mainero, C., Cohen-Adad, J., & Granberg, T. (2020). Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 30(5), 674–682. https://doi.org/10.1111/jon.12725

Marks, M. P., Holmgren, E. B., Fox, A. J., Patel, S., von Kummer, R., & Froehlich, J. (1999). Evaluation of early computed tomographic findings in acute ischemic stroke. Stroke; a Journal of Cerebral Circulation, 30(2), 389–392. https://doi.org/10.1161/01.str.30.2.389

Marquand, A. F., Filippone, M., Ashburner, J., Girolami, M., Mourao-Miranda, J., Barker, G. J., Williams, S. C. R., Leigh, P. N., & Blain, C. R. V. (2013). Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. PloS One, 8(7), e69237. https://doi.org/10.1371/ journal.pone.0069237

Marzullo, A., Kocevar, G., Stamile, C., Durand-Dubief, F., Terracina, G., Calimeri, F., & Sappey-Marinier, D. (2019). Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks. Frontiers in Neuroscience, 13, 594. https://doi.org/10.3389/fnins.2019.00594

Matthews, P. M., Roncaroli, F., Waldman, A., Sormani, M. P., De Stefano, N., Giovannoni, G., & Reynolds, R. (2016). A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 16(4), 279–287. https://doi.org/10.1136/practneurol-2016-001381

McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and Treatment of Multiple Sclerosis: A Review.JAMA: The Journal of the American Medical Association, 325(8), 765–779. https://doi.org/10.1001/jama.2020.26858

McLouth, J., Elstrott, S., Chaibi, Y., Quenet, S., Chang, P. D., Chow, D. S., & Soun, J. E. (2021). Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion. Frontiers in Neurology, 12, 656112. https://doi.org/10.3389/fneur.2021.656112

Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-A., Arbel, T., Avants, B. B., Ayache, N., Buendia, P., Collins, D. L., Cordier, N., … Van Leemput, K. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993–2024. https://doi.org/10.1109/ TMI.2014.2377694

Merkaj, S., Bahar, R. C., Zeevi, T., Lin, M., Ikuta, I., Bousabarah, K., Cassinelli Petersen, G. I., Staib, L., Payabvash, S., Mongan, J. T., Cha, S., & Aboian, M. S. (2022). Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers, 14(11). https://doi.org/10.3390/cancers14112623

Moazami, F., Lefevre-Utile, A., Papaloukas, C., & Soumelis, V. (2021). Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Frontiers in Immunology, 12, 700582. https://doi.org/10.3389/ fimmu.2021.700582

Mohd Saad, N., Abdullah, A. R., Mohd Noor, N. S., & Mohd Ali, N. (2019). Automated Segmentation And Classification Technique For Brain Stroke. International Journal of Electrical, Computer, and Systems Engineering, 9(3), 1832–1841. https://doi.org/10.11591/ijece.v9i3.pp1832-1841

Mokin, M., Ansari, S. A., McTaggart, R. A., Bulsara, K. R., Goyal, M., Chen, M., Fraser, J. F., & Society of NeuroInterventional Surgery. (2019). Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. Journal of Neurointerventional Surgery, 11(3), 215–220. https://doi.org/10.1136/ neurintsurg-2018-014640

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage, 104, 398–412. https://doi.org/10.1016/j.neuroimage.2014.10.002

Morey, J. R., Zhang, X., Yaeger, K. A., Fiano, E., Marayati, N. F., Kellner, C. P., De Leacy, R. A., Doshi, A., Tuhrim, S., & Fifi, J. T. (2021). Real-World Experience with Artificial Intelligence- Based Triage in Transferred Large Vessel Occlusion Stroke Patients. Cerebrovascular Diseases, 50(4), 450–455. https://doi.org/10.1159/000515320

Murray, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2020). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of Neurointerventional Surgery, 12(2), 156–164. https://doi.org/10.1136/neurintsurg-2019-015135

Nagel, S., Sinha, D., Day, D., Reith, W., Chapot, R., Papanagiotou, P., Warburton, E. A., Guyler, P., Tysoe, S., Fassbender, K., Walter, S., Essig, M., Heidenrich, J., Konstas, A. A., Harrison, M., Papadakis, M., Greveson, E., Joly, O., Gerry, S., … Grunwald, I. Q. (2017). e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 12(6), 615–622. https://doi. org/10.1177/1747493016681020

Nazari-Farsani, S., Nyman, M., Karjalainen, T., Bucci, M., Isojärvi, J., & Nummenmaa, L. (2020). Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. Journal of Neuroscience Methods, 333, 108575. https://doi.org/10.1016/j. jneumeth.2019.108575

Neeb, H., & Schenk, J. (2019). Multivariate prediction of multiple sclerosis using robust quantitative MR-based image metrics. Zeitschrift Fur Medizinische Physik, 29(3), 262–271. https://doi.org/10.1016/j.zemedi.2018.10.004

Ocasio, E., & Duong, T. Q. (2021). Deep learning prediction of mild cognitive impairment conversion to Alzheimer’s disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI. PeerJ. Computer Science, 7, e560. https://doi.org/10.7717/ peerj-cs.560

Olive-Gadea, M., Crespo, C., Granes, C., Hernandez-Perez, M., Pérez de la Ossa, N., Laredo, C., Urra, X., Carlos Soler, J., Soler, A., Puyalto, P., Cuadras, P., Marti, C., & Ribo, M. (2020). Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography. Stroke; a Journal of Cerebral Circulation, 51(10), 3133–3137. https://doi.org/10.1161/ STROKEAHA.120.030326

Olive-Gadea, M., Martins, N., Boned, S., Carvajal, J., Moreno, M. J., Muchada, M., Molina, C. A., Tomasello, A., Ribo, M., & Rubiera, M. (2019). Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(2), 198–202. https://doi.org/10.1111/ jon.12564

Olthof, A. W., van Ooijen, P. M. A., & Rezazade Mehrizi, M. H. (2020). Promises of artificial intelligence in neuroradiology: a systematic technographic review. Neuroradiology, 62(10), 1265–1278. https://doi.org/10.1007/s00234-020-02424-w

Öman, O., Mäkelä, T., Salli, E., Savolainen, S., & Kangasniemi, M. (2019). 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental, 3(1), 8. https://doi.org/10.1186/s41747-019-0085-6

Ozsahin, I., Sekeroglu, B., Pwavodi, P. C., & Mok, G. S. P. (2020). High-accuracy Automated Diagnosis of Parkinson’s Disease. Current Medical Imaging Reviews, 16(6), 688–694. https://doi.org/10.2174/1573405615666190620113607

Pagan, F. L. (2012). Improving outcomes through early diagnosis of Parkinson’s disease. The American Journal of Managed Care, 18(7 Suppl), S176–S182. https://www.ncbi.nlm. nih.gov/pubmed/23039866

Park, J. E., Kim, H. S., Park, S. Y., Nam, S. J., Chun, S.-M., Jo, Y., & Kim, J. H. (2020). Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wildtype Glioblastoma. Radiology, 294(2), 388–397. https://doi. org/10.1148/radiol.2019190913

Peng, B., Wang, S., Zhou, Z., Liu, Y., Tong, B., Zhang, T., & Dai, Y. (2017). A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neuroscience Letters, 651, 88–94. https://doi. org/10.1016/j.neulet.2017.04.034

Petersen, R. C. (2016). Mild Cognitive Impairment. Continuum, 22(2 Dementia), 404–418. https://doi.org/10.1212/CON.0000000000000313

Piccardo, A., Cappuccio, R., Bottoni, G., Cecchin, D., Mazzella, L., Cirone, A., Righi, S., Ugolini, M., Bianchi, P., Bertolaccini, P., Lorenzini, E., Massollo, M., Castaldi, A., Fiz, F., Strada, L., Cistaro, A., & Del Sette, M. (2021). The role of the deep convolutional neural network as an aid to interpreting brain [18F]DOPA PET/CT in the diagnosis of Parkinson’s disease. European Radiology, 31(9), 7003–7011. https://doi.org/10.1007/ s00330-021-07779-z

Pirson, F. A. V., Boodt, N., Brouwer, J., Bruggeman, A. A. E., den Hartog, S. J., Goldhoorn, R.-J. B., Langezaal, L. C. M., Staals, J., van Zwam, W. H., van der Leij, C., Brans, R. J. B., Majoie, C. B. L. M., Coutinho, J. M., Emmer, B. J., Dippel, D. W. J., van der Lugt, A., Vos, J.-A., van Oostenbrugge, R. J., Schonewille, W. J., & MR CLEAN Registry Investigators†. (2022). Endovascular Treatment for Posterior Circulation Stroke in Routine Clinical Practice: Results of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands Registry. Stroke; a Journal of Cerebral Circulation, 53(3), 758–768. https://doi.org/10.1161/ STROKEAHA.121.034786

Pläschke, R. N., Cieslik, E. C., Müller, V. I., Hoffstaedter, F., Plachti, A., Varikuti, D. P., Goosses, M., Latz, A., Caspers, S., Jockwitz, C., Moebus, S., Gruber, O., Eickhoff, C. R., Reetz, K., Heller, J., Südmeyer, M., Mathys, C., Caspers, J., Grefkes, C., … Eickhoff, S. B. (2017). On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: Evidence from connectivity-based single-subject classification. Human Brain Mapping, 38(12), 5845–5858. https://doi.org/10.1002/hbm.23763

Polson, J. S., Zhang, H., Nael, K., Salamon, N., Yoo, B. Y., El-Saden, S., Starkman, S., Kim, N., Kang, D.-W., Speier, W. F., 4th, & Arnold, C. W. (2022). Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging. https://doi.org/10.1111/jon.13043

Potreck, A., Weyland, C. S., Seker, F., Neuberger, U., Herweh, C., Hoffmann, A., Nagel, S., Bendszus, M., & Mutke, M. A. (2022). Accuracy and prognostic role of NCCT-ASPECTS depend on time from acute stroke symptom-onset for both human and machine-learning based evaluation. Clinical Neuroradiology, 32(1), 133–140. https://doi.org/10.1007/s00062-021-01110-5

Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2018). 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke; a Journal of Cerebral Circulation, 49(3), e46–e110. https://doi.org/10.1161/STR.0000000000000158

Qiu, W., Kuang, H., Teleg, E., Ospel, J. M., Sohn, S. I., Almekhlafi, M., Goyal, M., Hill, M. D., Demchuk, A. M., & Menon, B. K. (2020). Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT. Radiology, 294(3), 638–644. https://doi.org/10.1148/ radiol.2020191193

Qubiotech. (2021, November 9). Qubiotech. https://qubiotech.com/en/resources/

Qureshi, A. I., Mendelow, A. D., & Hanley, D. F. (2009). Intracerebral haemorrhage. The Lancet, 373(9675), 1632–1644. https://doi.org/10.1016/S0140-6736(09)60371-8

Raimbault, A., Cazals, X., Lauvin, M.-A., Destrieux, C., Chapet, S., & Cottier, J.-P. (2014). Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagnostic and Interventional Imaging, 95(10), 985–1000. https:// doi.org/10.1016/j.diii.2014.06.013

Rao, B., Zohrabian, V., Cedeno, P., Saha, A., Pahade, J., & Davis, M. A. (2021). Utility of Artificial Intelligence Tool as a Prospective Radiology Peer Reviewer - Detection of Unreported Intracranial Hemorrhage. Academic Radiology, 28(1), 85–93. https://doi.org/10.1016/j.acra.2020.01.035

Rava, R. A., Peterson, B. A., Seymour, S. E., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients. The Neuroradiology Journal, 34(5), 408–417. https://doi.org/10.1177/1971400921998952

Rava, R. A., Seymour, S. E., LaQue, M. E., Peterson, B. A., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Assessment of an Artificial Intelligence Algorithm for Detection of Intracranial Hemorrhage. World Neurosurgery, 150, e209–e217. https://doi. org/10.1016/j.wneu.2021.02.134

Rezazade Mehrizi, M. H., van Ooijen, P., & Homan, M. (2021). Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. European Radiology, 31(4), 1805–1811. https://doi.org/10.1007/s00330-020-07230-9

Rizzo, G., Copetti, M., Arcuti, S., Martino, D., Fontana, A., & Logroscino, G. (2016). Accuracy of clinical diagnosis of Parkinson disease: A systematic review and metaanalysis. Neurology, 86(6), 566–576. https://doi.org/10.1212/ WNL.0000000000002350

Roca, P., Attye, A., Colas, L., Tucholka, A., Rubini, P., Cackowski, S., Ding, J., Budzik, J.-F., Renard, F., Doyle, S., Barbier, E. L., Bousaid, I., Casey, R., Vukusic, S., Lassau, N., Verclytte, S., Cotton, F., OFSEP Investigators, Steering Committee, … Imaging group. (2020). Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagnostic and Interventional Imaging, 101(12), 795–802. https://doi.org/10.1016/j.diii.2020.05.009

Rocca, M. A., Anzalone, N., Storelli, L., Del Poggio, A., Cacciaguerra, L., Manfredi, A. A., Meani, A., & Filippi, M. (2021). Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investigative Radiology, 56(4), 252–260. https://doi.org/10.1097/ RLI.0000000000000735

Rotstein, D., & Montalban, X. (2019). Reaching an evidencebased prognosis for personalized treatment of multiple sclerosis. Nature Reviews. Neurology, 15(5), 287–300. https://doi.org/10.1038/s41582-019-0170-8

Roy, S., Butman, J. A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2018). Multiple Sclerosis Lesion Segmentation from Brain MRI via Fully Convolutional Neural Networks. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1803.09172

Saccà, V., Sarica, A., Novellino, F., Barone, S., Tallarico, T., Filippelli, E., Granata, A., Chiriaco, C., Bruno Bossio, R., Valentino, P., & Quattrone, A. (2019). Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain Imaging and Behavior, 13(4), 1103–1114. https://doi.org/10.1007/s11682-018-9926-9

Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., Castiglioni, I., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Frontiers in Neuroscience, 9, 307. https://doi.org/10.3389/fnins.2015.00307

Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi, M. C., & Quattrone, A. (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222, 230–237. https://doi.org/10.1016/j.jneumeth.2013.11.016

Samarasekera, S., Udupa, J. K., Miki, Y., Wei, L., & Grossman, R. I. (1997). A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. Journal of Computer Assisted Tomography, 21(1), 145–151. https://doi.org/10.1097/00004728-199701000-00028

Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V. J., Zimmer, C., Hemmer, B., & Mühlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774–3783. https://doi.org/10.1016/j.neuroimage.2011.11.032

Schmitt, N., Mokli, Y., Weyland, C. S., Gerry, S., Herweh, C., Ringleb, P. A., & Nagel, S. (2022). Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. European Radiology, 32(4), 2246–2254. https://doi.org/10.1007/s00330-021-08352-4

Schröder, J., & Thomalla, G. (2016). A Critical Review of Alberta Stroke Program Early CT Score for Evaluation of Acute Stroke Imaging. Frontiers in Neurology, 7, 245. https://doi.org/10.3389/ fneur.2016.00245

Schweitzer, A. D., Niogi, S. N., Whitlow, C. T., & Tsiouris, A. J. (2019). Traumatic Brain Injury: Imaging Patterns and Complications. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 39(6), 1571–1595. https://doi.org/10.1148/rg.2019190076

Seker, F., Pfaff, J., Nagel, S., Vollherbst, D., Gerry, S., Möhlenbruch, M. A., Bendszus, M., & Herweh, C. (2019). CT Reconstruction Levels Affect Automated and Reader- Based ASPECTS Ratings in Acute Ischemic Stroke. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(1), 62–64. https://doi.org/10.1111/jon.12562

Siddique, M. M. R., Yang, D., He, Y., Xu, D., & Myronenko, A. (2022). Automated ischemic stroke lesion segmentation from 3D MRI. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2209.09546

Singh, G., Manjila, S., Sakla, N., True, A., Wardeh, A. H., Beig, N., Vaysberg, A., Matthews, J., Prasanna, P., & Spektor, V. (2021). Radiomics and radiogenomics in gliomas: a contemporary update. British Journal of Cancer, 125(5), 641–657. https://doi.org/10.1038/s41416-021-01387-w

Skull fractures. (n.d.). Retrieved January 7, 2023, from https:// bestpractice.bmj.com/topics/en-gb/3000207

Song, T. (2019). Generative Model-Based Ischemic Stroke Lesion Segmentation. In arXiv [eess.IV]. arXiv. http://arxiv.org/ abs/1906.02392

Spasov, S., Passamonti, L., Duggento, A., Liò, P., Toschi, N., & Alzheimer’s Disease Neuroimaging Initiative. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287. https://doi.org/10.1016/j. neuroimage.2019.01.031

Strub, W. M., Leach, J. L., Tomsick, T., & Vagal, A. (2007). Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage. AJNR. American Journal of Neuroradiology, 28(9), 1679–1682. https://doi.org/10.3174/ajnr.A0653

Tang, Y., Xiao, X., Xie, H., Wan, C.-M., Meng, L., Liu, Z.-H., Liao, W.-H., Tang, B.-S., & Guo, J.-F. (2017). Altered Functional Brain Connectomes between Sporadic and Familial Parkinson’s Patients. Frontiers in Neuroanatomy, 11, 99. https://doi.org/10.3389/fnana.2017.00099

Theocharakis, P., Glotsos, D., Kalatzis, I., Kostopoulos, S., Georgiadis, P., Sifaki, K., Tsakouridou, K., Malamas, M., Delibasis, G., Cavouras, D., & Nikiforidis, G. (2009). Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Magnetic Resonance Imaging, 27(3), 417–422. https://doi.org/10.1016/j. mri.2008.07.014

Thomalla, G., Cheng, B., Ebinger, M., Hao, Q., Tourdias, T., Wu, O., Kim, J. S., Breuer, L., Singer, O. C., Warach, S., Christensen, S., Treszl, A., Forkert, N. D., Galinovic, I., Rosenkranz, M., Engelhorn, T., Köhrmann, M., Endres, M., Kang, D. W., … Gerloff, C. (2011). DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): A multicentre observational study. Lancet Neurology, 10(11), 978–986. https:// doi.org/10.1016/S1474-4422(11)70192-2

Thomalla, G., Simonsen, C. Z., Boutitie, F., Andersen, G., Berthezene, Y., Cheng, B., Cheripelli, B., Cho, T.-H., Fazekas, F., Fiehler, J., Ford, I., Galinovic, I., Gellissen, S., Golsari, A., Gregori, J., Günther, M., Guibernau, J., Häusler, K. G., Hennerici, M., … Gerloff, C. (2018). MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. The New England Journal of Medicine, NEJMoa1804355. https://doi.org/10.1056/ NEJMoa1804355

Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474- 4422(17)30470-2

Thust, S. C., van den Bent, M. J., & Smits, M. (2018). Pseudoprogression of brain tumors. Journal of Magnetic Resonance Imaging: JMRI, 48(3), 571–589. https://doi. org/10.1002/jmri.26171

Tommasin, S., Cocozza, S., Taloni, A., Giannì, C., Petsas, N., Pontillo, G., Petracca, M., Ruggieri, S., De Giglio, L., Pozzilli, C., Brunetti, A., & Pantano, P. (2021). Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 268(12), 4834–4845. https://doi.org/10.1007/s00415- 021-10605-7

Tsai, J. P., & Albers, G. W. (2017). Wake-Up Stroke. Topics in Magnetic Resonance Imaging: TMRI, 1. https://doi.org/10.1097/ RMR.0000000000000126

Valverde, S., Cabezas, M., Roura, E., González-Villà, S., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Oliver, A., & Lladó, X. (2017). Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 155, 159–168. https://doi.org/10.1016/j.neuroimage.2017.04.034

Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Salvi, J., Oliver, A., & Lladó, X. (2019). One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage. Clinical, 21, 101638. https://doi.org/10.1016/j. nicl.2018.101638

van Asch, C. J., Luitse, M. J., Rinkel, G. J., van der Tweel, I., Algra, A., & Klijn, C. J. (2010). Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurology, 9(2), 167–176. https://doi. org/10.1016/S1474-4422(09)70340-0

van Leeuwen, K. G., Meijer, F. J. A., Schalekamp, S., Rutten, M. J. C. M., van Dijk, E. J., van Ginneken, B., Govers, T. M., & de Rooij, M. (2021). Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment. Insights into Imaging, 12(1), 133. https://doi.org/10.1186/s13244-021-01077-4

van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., & de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 31(6), 3797–3804. https://doi.org/10.1007/s00330-021-07892-z

Wachinger, C., Reuter, M., & Klein, T. (2018). DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage, 170, 434–445. https://doi.org/10.1016/j. neuroimage.2017.02.035

Wang, X., Shen, T., Yang, S., Lan, J., Xu, Y., Wang, M., Zhang, J., & Han, X. (2021). A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. NeuroImage. Clinical, 32, 102785. https://doi. org/10.1016/j.nicl.2021.102785

Wardlaw, J. M., Mair, G., von Kummer, R., Williams, M. C., Li, W., Storkey, A. J., Trucco, E., Liebeskind, D. S., Farrall, A., Bath, P. M., & White, P. (2022). Accuracy of Automated Computer-Aided Diagnosis for Stroke Imaging: A Critical Evaluation of Current Evidence. Stroke; a Journal of Cerebral Circulation, 53(7), 2393–2403. https://doi.org/10.1161/ STROKEAHA.121.036204

Wattjes, M. P., Rovira, À., Miller, D., Yousry, T. A., Sormani, M. P., de Stefano, M. P., Tintoré, M., Auger, C., Tur, C., Filippi, M., Rocca, M. A., Fazekas, F., Kappos, L., Polman, C., Frederik Barkhof, Xavier Montalban, & MAGNIMS study group. (2015). Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nature Reviews. Neurology, 11(10), 597–606. https://doi.org/10.1038/nrneurol.2015.157

Wildner, P., Stasiołek, M., & Matysiak, M. (2020). Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Multiple Sclerosis and Related Disorders, 37, 101452. https://doi.org/10.1016/j.msard.2019.101452

Wismüller, A., & Stockmaster, L. (2020). A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, 11317, 144–150. https://doi. org/10.1117/12.2552400

Wong, K. K., Cummock, J. S., Li, G., Ghosh, R., Xu, P., Volpi, J. J., & Wong, S. T. C. (2022). Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome. Stroke; a Journal of Cerebral Circulation, 101161STROKEAHA121037982. https://doi. org/10.1161/STROKEAHA.121.037982

World Stroke Organisation (2022) Global Stroke Fact Sheet. Retrieved December 2022 from https://www.world-stroke.org/ assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf

Wottschel, V., Alexander, D. C., Kwok, P. P., Chard, D. T., Stromillo, M. L., De Stefano, N., Thompson, A. J., Miller, D. H., & Ciccarelli, O. (2015). Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage. Clinical, 7, 281–287. https://doi.org/10.1016/j.nicl.2014.11.021

Wottschel, V., Chard, D. T., Enzinger, C., Filippi, M., Frederiksen, J. L., Gasperini, C., Giorgio, A., Rocca, M. A., Rovira, A., De Stefano, N., Tintoré, M., Alexander, D. C., Barkhof, F., Ciccarelli, O., & MAGNIMS study group and the EuroPOND consortium. (2019). SVM recursive feature elimination analyses of structural brain MRI predicts nearterm relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage. Clinical, 24, 102011. https://doi.org/10.1016/j.nicl.2019.102011

Yahav-Dovrat, A., Saban, M., Merhav, G., Lankri, I., Abergel, E., Eran, A., Tanne, D., Nogueira, R. G., & Sivan-Hoffmann, R. (2021). Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center. AJNR. American Journal of Neuroradiology, 42(2), 247–254. https://doi.org/10.3174/ajnr.A6923

Ye, H., Gao, F., Yin, Y., Guo, D., Zhao, P., Lu, Y., Wang, X., Bai, J., Cao, K., Song, Q., Zhang, H., Chen, W., Guo, X., & Xia, J. (2019). Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology, 29(11), 6191–6201. https:// doi.org/10.1007/s00330-019-06163-2

Yoo, Y., Tang, L. Y. W., Brosch, T., Li, D. K. B., Kolind, S., Vavasour, I., Rauscher, A., MacKay, A. L., Traboulsee, A., & Tam, R. C. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage. Clinical, 17, 169–178. https://doi.org/10.1016/j. nicl.2017.10.015

Zaki, L. A. M., Vernooij, M. W., Smits, M., Tolman, C., Papma, J. M., Visser, J. J., & Steketee, R. M. E. (2022). Comparing two artificial intelligence software packages for normative brain volumetry in memory clinic imaging. Neuroradiology, 64(7), 1359–1366. https://doi.org/10.1007/s00234-022-02898-w

Zhang, Q., Cao, J., Zhang, J., Bu, J., Yu, Y., Tan, Y., Feng, Q., & Huang, M. (2019). Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. Computational and Mathematical Methods in Medicine, 2019, 2893043. https://doi. org/10.1155/2019/2893043

Zhang, S., Nguyen, T. D., Zhao, Y., Gauthier, S. A., Wang, Y., & Gupta, A. (2018). Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions. NeuroImage. Clinical, 18, 143–148. https://doi.org/10.1016/j. nicl.2018.01.013

Zhang, Y.-Q., Liu, A.-F., Man, F.-Y., Zhang, Y.-Y., Li, C., Liu, Y.-E., Zhou, J., Zhang, A.-P., Zhang, Y.-D., Lv, J., & Jiang, W.-J. (2022). MRI radiomic features-based machine learning approach to classify ischemic stroke onset time. Journal of Neurology, 269(1), 350–360. https://doi.org/10.1007/s00415-021-10638-y

Zhao, Y., Healy, B. C., Rotstein, D., Guttmann, C. R. G., Bakshi, R., Weiner, H. L., Brodley, C. E., & Chitnis, T. (2017). Exploration of machine learning techniques in predicting multiple sclerosis disease course. PloS One, 12(4), e0174866. https://doi.org/10.1371/journal.pone.0174866

Zhao, Y., Wang, T., Bove, R., Cree, B., Henry, R., Lokhande, H., Polgar-Turcsanyi, M., Anderson, M., Bakshi, R., Weiner, H. L., Chitnis, T., & SUMMIT Investigators. (2020). Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. NPJ Digital Medicine, 3, 135. https://doi. org/10.1038/s41746-020-00338-8

Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., & Chen, Y. (2021). An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage. Clinical, 31, 102744. https://doi.org/10.1016/j. nicl.2021.102744

Zurita, M., Montalba, C., Labbé, T., Cruz, J. P., Dalboni da Rocha, J., Tejos, C., Ciampi, E., Cárcamo, C., Sitaram, R., & Uribe, S. (2018). Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. NeuroImage. Clinical, 20, 724–730. https://doi.org/10.1016/j. nicl.2018.09.002

 

Guide to Artificial Intelligence in Radiology

    Artificial intelligence (AI) is playing a growing role in all our lives and has shown promise in addressing some of the greatest current and upcoming societal challenges we face. The healthcare industry, though notoriously complex and resistant to disruption, potentially has a lot to gain from the use of AI. With an established history of leading digital transformation in healthcare and an urgent need for improved efficiency, radiology has been at the forefront of harnessing AI’s potential.

    This book covers how and why AI can address challenges faced by radiology departments, provides an overview of the fundamental concepts related to AI, and describes some of the most promising use cases for AI in radiology. In addition, the major challenges associated with the adoption of AI into routine radiological practice are discussed. The book also covers some crucial points radiology departments should keep in mind when deciding on which AI-based solutions to purchase. Finally, it provides an outlook on what new and evolving aspects of AI in radiology to expect in the near future.

    The healthcare industry has experienced a number of trends over the past few decades that demand a change in the way certain things are done. These trends are particularly salient in radiology, where the diagnostic quality of imaging scans has improved dramatically while scan times have decreased. As a result, the amount and complexity of medical imaging data acquired have increased substantially over the past few decades (Smith-Bindman et al., 2019; Winder et al., 2021) and are expected to continue to increase (Tsao, 2020). This issue is complicated by a widespread global shortage of radiologists (AAMC Report Reinforces Mounting Physician Shortage, 2021, Clinical Radiology UK Workforce Census 2019 Report, 2019). Healthcare workers, including radiologists, have an increasing workload (Bruls & Kwee, 2020; Levin et al., 2017) that contributes to burnout and medical errors (Harry et al., 2021). Being an essential service provider to virtually all other hospital departments, staff shortages within radiology have significant effects that spread throughout the hospital and to society as a whole (England & Improvement, 2019; Sutherland et al., n.d.).

    With an ageing global population and a rising burden of chronic illnesses, these issues are expected to pose even more of a challenge to the healthcare industry in the future.

    AI-based medical imaging solutions have the potential to ameliorate these challenges for several reasons. They are particularly suited to handling large, complex datasets (Alzubaidi et al., 2021). Moreover, they are well suited to automate some of the tasks traditionally performed by radiologists and radiographers, potentially freeing up time and making workflows within radiology departments more efficient (Allen et al., 2021; Baltruschat et al., 2021; Kalra et al., 2020; O’Neill et al., 2021; van Leeuwen et al., 2021; Wong et al., 2019). AI is also capable of detecting complex patterns in data that humans cannot necessarily find or quantify (Dance, 2021; Korteling et al., 2021; Kühl et al., 2020).

    The term “artificial intelligence” refers to the use of computer systems to solve specific problems in a way that simulates human reasoning. One fundamental characteristic of AI is that, like humans, these systems can tailor their solutions to changing circumstances. Note that, while these systems are meant to mimic on a fundamental level how humans think, their capacity to do so (e.g. in terms of the amount of data they can handle at one time, the nature and amount of patterns they can find in the data, and the speed at which they do so) often exceeds that of humans.

    AI solutions come in the form of computer algorithms, which are pieces of computer code representing instructions to be followed to solve a specific problem. In its most fundamental form, the algorithm takes data as an input, performs some computation on that data, and returns an output.

    An AI algorithm can be explicitly programmed to solve a specific task, analogous to a step-by-step recipe for baking a cake. On the other hand, the algorithm can be programmed to look for patterns within the data in order to solve the problem. These types of algorithms are known as machine learning algorithms. Thus, all machine learning algorithms are AI, but not all AI is machine learning. The patterns in the data that the algorithm can be explicitly programmed to look for or that it can “discover” by itself are known as features. An important characteristic of machine learning is that such algorithms learn from the data itself, and their performance improves the more data they are given.

    One of the most common uses of machine learning is in classification - assigning a piece of data a particular label. For example, a machine learning algorithm might be used to tell if a photo (the input) shows a dog or a cat (the label). The algorithm can learn to do so in a supervised or unsupervised way.

    Supervised learning

    In supervised learning, the machine learning algorithm is given data that has been labelled with the ground truth, in this example, photos of dogs and cats that have been labelled as such. The process then goes through the following phases:

    1.Training phase: The algorithm learns the features associated with dogs and cats using the aforementioned data (training data).
    2.Test phase: The algorithm is then given a new set of photos (the test data), it labels them and the performance of the algorithm on that data is assessed.

    In some cases, there is a phase in between training and test, known as the validation phase. In this phase, the algorithm is given a new set of photos (not included in either the training or test data), its performance is assessed on this data, and the model is tweaked and retrained on the training data. This is repeated until some predefined performance-based criterion is reached, and the algorithm then enters the test phase.

    Unsupervised learning

    In unsupervised learning, the algorithm identifies features within the input data that allow it to assign classes to the individual data points without being told explicitly what those classes are or should be. Such algorithms can identify patterns or group data points together without human intervention and include clustering and dimensionality reduction algorithms. Not all machine learning algorithms perform classification. Some are used to predict a continuous metric (e.g. the temperature in four weeks’ time) instead of a discrete label (e.g. cats vs dogs). These are known as regression algorithms.

    Neural networks and deep learning

    A neural network is made up of an input layer and an output layer, which are themselves composed of nodes. In simple neural networks, features that are manually derived from a dataset are fed into the input layer, which performs some computations, the results of which are relayed to the output layer. In deep learning, multiple “hidden” layers exist between the input and output layers. Each node of the hidden layers performs calculations using certain weights and relays the output to the next hidden layer until the output layer is reached.

    In the beginning, random values are assigned to the weights and the accuracy of the algorithm is calculated. The values of the weights are then iteratively adjusted until a set of weight values that maximize accuracy is found. This iterative adjustment of the weight values is usually done by moving backwards from the output layer to the input layer, a technique called backpropagation. This entire process is done on the training data.

    Performance evaluation

    Understanding how the performance of AI algorithms is assessed is key to interpreting the AI literature. Several performance metrics exist for assessing how well a model performs certain tasks. No single metric is perfect, so a combination of several metrics provides a fuller picture of model performance.

    In regression, the most commonly used metrics include:

    • Mean absolute error (MAE): the average difference between the predicted values and the ground truth.
    • Root mean square error (RMSE): the differences between the predicted values and the ground truth are squared and then averaged over the sample. Then the square root of the average is taken. Unlike the MAE, the RMSE thus gives higher weight to larger differences.
    • R2: the proportion of the total variance in the ground truth explained by the variance in the predicted values. It ranges from 0 to 1.

    The following metrics are commonly used in classification tasks:

    • Accuracy: this is the proportion of all predictions that were predicted correctly. It ranges from 0 to 1.
    • Sensitivity: also known as the true positive rate (TPR) or recall, this is the proportion of true positives that were predicted correctly. It ranges from 0 to 1.
    • Specificity: Also known as the true negative rate (TNR), this is the proportion of true negatives that were predicted correctly. It ranges from 0 to 1.
    • Precision: also known as positive predictive value (PPV), this is the proportion of positive classifications that were predicted correctly. It ranges from 0 to 1.

    An inherent trade-off exists between sensitivity and specificity. The relevant importance of each, as well as their interpretation, highly depends on the specific research question and classification task.

    Importantly, although classification models are meant to reach a binary conclusion, they are inherently probability-based. This means that these models will output a probability that a data point belongs to one class or another. In order to reach a conclusion on the most likely class, a threshold is used. Metrics such as accuracy, sensitivity, specificity and precision refer to the performance of the algorithm based on a certain threshold. The area under the receiver operating characteristic curve (AUC) is a threshold-independent performance metric. The AUC can be interpreted as the probability that a random positive example is ranked higher by the algorithm than a random negative example.

    In image segmentation tasks, which are a type of classification task, the following metrics are commonly used:

    • Dice similarity coefficient: a measure of overlap between two sets (e.g. two images) that is calculated as two times the number of elements common to the sets divided by the sum of the number of elements in each set. It ranges from 0 (no overlap) to 1 (perfect overlap).
    • Hausdorff distance: a measure of how far two sets (e.g. two images) within a space are far from each other. It is basically the largest distance from one point in one set to the closest point in the other set.

    Internal and external validity

    Internally valid models perform well in their task on the data being used to train and validate them. The degree to which they are internally valid is assessed using the performance metrics outlined above and depends on the characteristics of the model itself and the quality of the data that the model was trained and validated on.

    Externally valid models perform well in their tasks on new data (Ramspek et al., 2021). The better the model performs on data that differs from the data the models were trained and validated on, the higher the external validity. In practice, this often requires the performance of the models to be tested on data from hospitals or geographical areas that were not part of the model’s training and validation datasets.

    Guidelines for evaluating AI research

    Several guidelines have been developed to assess the evidence behind AI-based interventions in healthcare (X. Liu et al., 2020; Mongan et al., 2020; Shelmerdine et al., 2021; Weikert et al., 2021). These provide a template for those doing AI research in healthcare and ensure that relevant information is reported transparently and comprehensively, but can also be used by other stakeholders to assess the quality of published research. This helps ensure that AI-based solutions with substantial potential or actual limitations, particularly those caused by poor reporting (Bozkurt et al., 2020; D. W. Kim et al., 2019; X. Liu et al., 2019; Nagendran et al., 2020; Yusuf et al., 2020), are not prematurely adopted (CONSORT-AI and SPIRIT-AI Steering Group, 2019). Guidelines have also been proposed for evaluating the trustworthiness of AI-based solutions in terms of transparency, confidentiality, security, and accountability (Buruk et al., 2020; Lekadir et al., 2021; Zicari et al., 2021).

    Over the past few years, AI has shown great potential in addressing a broad range of tasks within a medical imaging department, including many that happen before the patient is scanned. Implementations of AI to improve the efficiency of radiology workflows prior to patient scanning are sometimes referred to as “upstream AI” (Kapoor et al., 2020; M. L. Richardson et al., 2021).

    Scheduling

    One promising upstream AI application is predicting whichpatients arelikelytomisstheirscanappointments. Missed appointments are associated with significantly increased workload and costs (Dantas et al., 2018). Using a Gradient Boosting approach, Nelson et al. predicted missed hospital magnetic resonance imaging (MRI) appointments in the United Kingdom’s National Health Service (NHS) with high accuracy (Nelson et al., 2019). Their simulations also suggested that acting on the predictions of this model by targeting patients who are likely to miss their appointments would potentially yield a net benefit of several pounds per appointment across a range of model thresholds and missed appointment rates (Nelson et al., 2019). Similar results were recently found in a study of a single hospital in Singapore. For the 6-month period following the deployment of the predictive tool they were able to significantly reduce the no show rate from 19.3 % tp 15.9 % which translated into a potential economic benefit of $180,000 (Chong et. al., 2020).

    Scheduling scans in a radiology department is a challenging endeavour because, although it is largely an administrative task, it depends heavily on medical information. The task of assigning patients to specific appointments thus often requires the input of someone with domain knowledge, which stipulates that either the person making the appointments must be a radiologist or radiology technician, or these people will have to provide input regularly. In either scenario, the process is somewhat inefficient and can potentially be streamlined using AI-based algorithms that check scan indications and contraindications and provide the people scheduling the scans with information about scan urgency (Letourneau-Guillon et al., 2020).

    Protocolling

    Depending on hospital or clinic policy, the decision on what exact scan protocol a patient receives is usually made based on the information on the referring physician’s scan request and the judgement of the radiologist. This is often supplemented by direct communication between the referring physician and radiologist and the radiologist’s review of the patient’s medical information. This process improves patient care (Boland et al., 2014) but can be time-consuming and inefficient, particularly with modalities like MRI, where a large number of protocol permutations exist. In one study, protocolling alone accounted for about 6 % of the radiologist’s working time (Schemmel et al., 2016). Radiologists are also often interrupted by tasks such as protocolling when interpreting images, despite the fact that the latter is considered a radiologist’s primary responsibility (Balint et al., 2014; J.-P. J. Yu et al., 2014).

    Interpretation of the narrative text of the referring physician’s scan request has been attempted using natural language classifiers, the same technology used in chatbots and virtual assistants. Natural language classifiers based on deep learning have shown promise in assigning patients to either a contrast-enhanced or non-enhanced MRI protocol for musculoskeletal MRI, with an accuracy of 83 % (Trivedi et al., 2018) and 94 % (Y. H. Lee, 2018). Similar algorithms have shown an accuracy of 95 % for predicting the appropriate brain MRI protocol using a combination of up to 41 different MRI sequences (Brown & Marotta, 2018). Across a wide range of body regions, a deep-learning-based natural language classifier decided based on the narrative text of the scan requests whether to automatically assign a specific computed tomography (CT) or MRI protocol (which it did with 95 % accuracy) or, in more difficult cases, recommend a list of three most appropriate protocols to the radiologist (which it did with 92 % accuracy) (Kalra et al., 2020).

    AI has also been used to decide whether already protocolled scans need to be extended, a decision which has to be made in real-time while the patient is inside the scanner. One such example is in prostate MRI, where a decision on whether to administer a contrast agent is often made after the non-contrast sequences. Hötker et al. found that a convolutional neural network (CNN) assigned 78 % of patients to the appropriate prostate MRI protocol (Hötker et al., 2021). The sensitivity of the CNN for the need for contrast was 94.4 % with a specificity of 68.8 % and only 2 % of patients in their study would have had to be called back for a contrast- enhanced scan (Hötker et al., 2021).

    Image quality improvement and monitoring

    Many AI-based solutions that work in the background of radiology workflows to improve image quality have recently been established. These include solutions for monitoring image quality, reducing image artefacts, improving spatial resolution, and speeding up scans.

    Such solutions are entering the radiology mainstream, particularly for computed tomography, which for decades used established but artefact-prone methods for reconstructing interpretable images from the raw sensor data (Deák et al., 2013; Singh et al., 2010).

    These are gradually being replaced by deep-learning- based reconstruction methods, which improve image quality while maintaining low radiation doses (Akagi et al., 2019; H. Chen et al., 2017; Choe et al., 2019; Shan et al., 2019). This reconstruction is performed on supercomputers on the CT scanner itself or on the cloud. The balance between radiation dose and image quality can be adjusted on a protocol-specific basis to tailor scans to individual patients and clinical scenarios (McLeavy et al., 2021; Willemink & Noël, 2019). Such approaches have found particular use when scanning children, pregnant women, and obese patients as well as CT scans of the urinary tract and heart (McLeavy et al., 2021).

    AI-based solutions have also been used to speed up scans while maintaining diagnostic quality. Scan time reduction not only improves overall efficiency but also contributes to an overall better patient experience and compliance with imaging examination. A multi- centre study of spine MRI showed that a deep-learning- based image reconstruction algorithm that enhanced images using filtering and detail-preserving noise reduction reduced scan times by 40 % (Bash, Johnson, et al., 2021). For T1-weighted MRI scans of the brain, a similar algorithm that improves image sharpness and reduces image noise reduced scan times by 60 % while maintaining the accuracy of brain region volumetry compared to standard scans (Bash, Wang, et al., 2021).

    In routine radiological practice, images often contain artefacts that reduce their interpretability. These artefacts are the result of characteristics of the specific imaging modality or protocol used or factors intrinsic to the patient being scanned, such as the presence of foreign bodies or the patient moving during the scan. Particularly with MRI, imaging protocols that demand fast scanning often introduce certain artefacts to the reconstructed image. In one study, a deep-learning- based algorithm reduced banding artefacts associated with balanced steady-state free precession MRI sequences of the brain and knee (K. H. Kim & Park, 2017). For real-time imaging of the heart using MRI, another study found that the aliasing artefacts introduced by the data undersampling were reduced by using a deep-learning-based approach (Hauptmann et al., 2019). The presence of metallic foreign bodies such as dental, orthopaedic or vascular implants is a common patient-related factor causing image artefacts in both CT and MRI (Boas & Fleischmann, 2012; Hargreaves et al., 2011). Although not yet well established, several deep-learning-based approaches for reducing these artefacts have been investigated (Ghani & Clem Karl, 2019; Puvanasunthararajah et al., 2021; Zhang & Yu, 2018). Similar approaches are being tested for reducing motion-related artefacts in MRI (Tamada et al., 2020; B. Zhao et al., 2022).

    AI-based solutions for monitoring image quality potentially reduce the need to call patients back to repeat imaging examinations, which is a common problem (Schreiber-Zinaman & Rosenkrantz, 2017). A deep-learning-based algorithm that identifies the radiographic view acquired and extracts quality-related metrics from ankle radiographs was able to predict image quality with about 94 % accuracy (Mairhöfer et al., 2021). Another deep-learning-based approach was capable of predicting nondiagnostic liver MRI scans with a negative predictive value of between 86 % and 94 % (Esses et al., 2018). This real-time automated quality control potentially allows radiology technicians to rerun scans or run additional scans with greater diagnostic value.

    Scan reading prioritization

    With staff shortages and increasing scan numbers, radiologists face long reading lists. To optimize efficiency and patient care, AI-based solutions have been suggested as a way to prioritize which scans radiologists read and report first, usually by screening acquired images for findings that require urgent intervention (O’Connor & Bhalla, 2021). This has been most extensively studied in neuroradiology, where moving CT scans that were found to have intracranial haemorrhage by an AI-based tool to the top of the reading list reduced the time it took radiologists to view the scans by several minutes (O’Neill et al., 2021). Another study found that the time-to diagnosis (which includes the time from image acquisition to viewing by the radiologist and the time to read and report the scans) was reduced from 512 to 19 minutes in an outpatient setting when such a worklist prioritization was used (Arbabshirani et al., 2018). A simulation study using AI-based worklist prioritization based on identifying urgent findings on chest radiographs (such as pneumothorax, pleural effusions, and foreign bodies) also found a substantial reduction in the time it took to view and report the scans compared to standard workflow prioritization (Baltruschat et al., 2021).

    Image interpretation

    Currently, the majority of commercially available AI- based solutions in medical imaging focus on some aspect of analyzing and interpreting images (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). This includes segmenting parts of the image (for surgical or radiation therapy targeting, for example), bringing suspicious areas to radiologists’ attention, extracting imaging biomarkers (radiomics), comparing images across time, and reaching specific imaging diagnoses.

    Neurology

    ¡ 29–38 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    Most commercially available AI-based solutions targeted at neuroimaging data aim to detect and characterize ischemic stroke, intracranial haemorrhage, dementia, and multiple sclerosis (Olthof et al., 2020). Several studies have shown excellent accuracy of AI- based methods for the detection and classification of intraparenchymal, subarachnoid, and subdural haemorrhage on head CT (Flanders et al., 2020; Ker et al., 2019; Kuo et al., 2019). Subsequent studies showed that, compared to radiologists, some AI-based solutions have substantially lower false positive and negative rates (Ginat, 2020; Rao et al., 2021). In ischemic stroke, AI-based solutions have largely focused on the quantification of the infarct core (Goebel et al., 2018; Maegerlein et al., 2019), the detection of large vessel occlusion (Matsoukas et al., 2022; Morey et al., 2021; Murray et al., 2020; Shlobin et al., 2022), and the prediction of stroke outcomes (Bacchi et al., 2020; Nielsen et al., 2018; Y. Yu et al., 2020, 2021).

    In multiple sclerosis, AI has been used to identify and segment lesions (Nair et al., 2020; S.-H. Wang et al., 2018), which can be particularly helpful for the longitudinal follow-up of patients. It has also been used to extract imaging features associated with progressive disease and conversion from clinically isolated syndrome to definite multiple sclerosis (Narayana et al., 2020; Yoo et al., 2019). Other applications of AI in neuroradiology include the detection of intracranial aneurysms (Faron et al., 2020; Nakao et al., 2018; Ueda et al., 2019) and the segmentation of brain tumours (Kao et al., 2019; Mlynarski et al., 2019; Zhou et al., 2020) as well as the prediction of brain tumour genetic markers from imaging data (Choi et al., 2019; J. Zhao et al., 2020)

    Chest

    ¡ 24 %–31 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    When interpreting chest radiographs, radiologists detected substantially more critical and urgent findings when aided by a deep-learning-based algorithm, and did so much faster than without the algorithm (Nam et al., 2021). Deep-learning-based image interpretation algorithms have also been found to improve radiology residents’ sensitivity for detecting urgent findings on chest radiographs from 66 % to 73 % (E. J. Hwang, Nam, et al., 2019). Another study which focused on a broader range of findings on chest radiographs also found that radiologists aided by a deep-learning-based algorithm had higher diagnostic accuracy than radiologists who read the radiographs without assistance (Seah et al., 2021). The uses of AI in chest radiology also extend to cross-sectional imaging like CT. A deep learning algorithm was found to detect pulmonary embolism on CT scans with high accuracy (AUC = 0.85) (Huang, Kothari, et al., 2020). Moreover, a deep learning algorithm was 90 % accurate in detecting aortic dissection on non-contrast-enhanced CT scans, similar to the performance of radiologists (Hata et al., 2021).

    Outside the emergency setting, AI-based solutions have been widely tested and implemented for tuberculosis screening on chest radiographs (E. J. Hwang, Park, et al., 2019; S. Hwang et al., 2016; Khan et al., 2020; Qin et al., 2019; WHO Operational Handbook on Tuberculosis Module 2: Screening – Systematic Screening for Tuberculosis Disease, n.d.). In addition, they have been useful for lung cancer screening both in terms of detecting lung nodules on CT (Setio et al., 2017) and chest radiographs (Li et al., 2020) and by classifying whether nodules are likely to be malignant or benign (Ardila et al., 2019; Bonavita et al., 2020; Ciompi et al., 2017; B. Wu et al., 2018). AI-based solutions also show great promise for the diagnosis of pneumonia, chronic obstructive pulmonary disease, and interstitial lung disease (F. Liu et al., 2021).

    Breast

    ¡ 11 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    So far, many of the AI-based algorithms targeting breast imaging aim to reduce the workload of radiologists reading mammograms. Ways to do this have included using AI-based algorithms to triage out negative mammograms, which in one study was associated with a reduction in radiologists’ workload by almost one-fifth (Yala et al., 2019). Other studies that have replaced second readers of mammograms with AI- based algorithms have shown that this leads to fewer false positives and false negatives as well as reduces the workload of the second reader by 88 % (McKinney et al., 2020).

    AI-based solutions for mammography have also been found to increase the diagnostic accuracy of radiologists (McKinney et al., 2020; Rodríguez-Ruiz et al., 2019; Watanabe et al., 2019) and some have been found to be highly accurate in independently detecting and classifying breast lesions (Agnes et al., 2019; Al- Antari et al., 2020; Rodriguez-Ruiz et al., 2019).
    Despite this, a recent systematic review of 36 AI- based algorithms found that these studies were of poor methodological quality and that all algorithms were less accurate than the consensus of two or more radiologists (Freeman et al., 2021). AI-based algorithms have nonetheless shown potential for extracting cancer-predictive features from mammograms beyond mammographic breast density (Arefan et al., 2020; Dembrower et al., 2020; Hinton et al., 2019). Beyond mammography, AI-based solutions have been developed for detecting and classifying breast lesions on ultrasound (Akkus et al., 2019; Park et al., 2019; G.- G. Wu et al., 2019) and MRI (Herent et al., 2019).

    Cardiac

    ¡ 11 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    Cardiac radiology has always been particularly challenging because of the difficulties inherent in acquiring images of a constantly moving organ. Because of this, it has benefited immensely from advances in imaging technology and seems set to benefit greatly from AI as well (Sermesant et al., 2021). Most of the AI-based applications of the cardiovascular system use MRI, CT or ultrasound data (Weikert et al., 2021). Prominent examples include the automated calculation of ejection fraction on echocardiography, quantification of coronary artery calcification on cardiac CT, determination of right ventricular volume on CT pulmonary angiography, and determination of heart chamber size and thickness on cardiac MRI (Medical AI Evaluation, n.d., The Medical Futurist, n.d.). AI-based solutions for the prediction of patients likely to respond favourably to cardiac interventions, such as cardiac resynchronization therapy, based on imaging and clinical parameters have also shown great promise (Cikes et al., 2019; Hu et al., 2019). Changes in cardiac MRI not readily visible to human readers but potentially useful for differentiating different types of cardiomyopathies can also be detected using AI through texture analysis (Neisius et al., 2019; J. Wang et al., 2020) and other radiomic approaches (Mancio et al., 2022).

    Musculoskeletal

    ¡ 7–11 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    Promising applications of AI in the assessment of muscles, bones and joints include applications where human readers generally show poor between- and within-rater reliability, such as the determination of skeletal age based on bone radiographs (Halabi et al., 2019; Thodberg et al., 2009) and screening for osteoporosis on radiographs (Kathirvelu et al., 2019; J.-S. Lee et al., 2019) and CT (Pan et al., 2020). AI- based solutions have also shown promise for detecting fractures on radiographs and CT (Lindsey et al., 2018; Olczak et al., 2017; Urakawa et al., 2019). One systematic review of AI-based solutions for fracture detection in several different body parts showed AUCs ranging from 0.94 to 1.00 and accuracies of 77 % to 98 % (Langerhuizen et al., 2019). AI-based solutions have also achieved accuracies similar to radiologists for classification of the severity of degenerative changes of the spine (Jamaludin et al., 2017) and extremity joints (F. Liu et al., 2018; Thomas et al., 2020). AI-based solutions have also been developed to determine the origin of skeletal metastases (Lang et al., 2019) and the classification of primary bone tumours (Do et al., 2017).

    Abdomen and pelvis

    ¡ 4 % of commercially available AI-based applications in radiology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021).

    Much of the efforts in using AI in abdominal imaging have thus far concentrated on the automated segmentation of organs such as the liver (Dou et al., 2017), spleen (Moon et al., 2019), pancreas (Oktay et al., 2018), and kidneys (Sharma et al., 2017). In addition, a systematic review of 11 studies using deep learning for the detection of malignant liver masses showed accuracies of up to 97 % and AUCs of up to 0.92 (Azer, 2019).

    Other applications of AI in abdominal radiology include the detection of liver fibrosis (He et al., 2019; Yasaka et al., 2018), fatty liver disease, hepatic iron content, the detection of free abdominal gas on CT, and automated volumetry and segmentation of the prostate (AI for Radiology, n.d.).

    Despite the great potential of AI in medical imaging, it has yet to find widespread implementation and impact in routine clinical practice. This research-to- clinic translation is being hindered by several complex and interrelated issues that directly or indirectly lower the likelihood of AI-based solutions being adopted. One major way they do so is by creating a lack of trust in AI- based solutions by key stakeholders such as regulators, healthcare professionals and patients (Cadario et al., 2021; Esmaeilzadeh, 2020; J. P. Richardson et al., 2021; Tucci et al., 2022).

    Generalizability

    One major challenge is to develop AI-based solutions that continue to perform well in new, real-world scenarios. In a large systematic review, almost half of the studied AI-based medical imaging algorithms reported a greater than 0.05 decrease in the AUC when tested on new data (A. C. Yu et al., 2022). This lack of generalizability can lead to adverse effects on how well the model performs in a real-world scenario.

    If a solution performs poorly when tested on a dataset with a similar or identical distribution to the training dataset, it is said to lack narrow generalizability and is often a consequence of overfitting (Eche et al., 2021). Potential solutions for overfitting are using larger training datasets and reducing the model’s complexity. If a solution performs poorly when tested on a dataset with a different distribution to the training dataset (e.g. a different distribution of patient ethnicities), it is said to lack broad generalizability (Eche et al., 2021). Solutions to poor broad generalizability include stress-testing the model on datasets with different distributions from the training dataset (Eche et al., 2021).

    AI solutions are often developed in a high-resource environment such as large technology companies and academic medical centres in wealthy countries. It is likely that findings and performance in these high-resource contexts will fail to generalize to lower- resource contexts such as smaller hospitals, rural areas or poorer countries (Price & Nicholson, 2019), which complicates the issue further.

    Risk of bias

    Biases can arise in AI-based solutions due to data or human factors. The former occurs when the data used to train the AI solution does not adequately represent the target population. Datasets can be unrepresentative when they are too small or have been collected in a way that misrepresents a certain population category. AI solutions trained on unrepresentative data perpetuate biases and perform poorly in the population categories underrepresented or misrepresented in the training data. The presence of such biases has been empirically shown in many AI-based medical imaging studies (Larrazabal et al., 2020; Seyyed-Kalantari et al., 2021).

    AI-based solutions are prone to several subjective and sometimes implicitly or explicitly prejudiced decisions during their development by humans. These human factors include how the training data is selected, how it is labelled, and how the decision is made to focus on the specific problem the AI-based solution intends to solve (Norori et al., 2021). Some recommendations and tools are available to help minimize the risk of bias in AI research (AIF360: A Comprehensive Set of Fairness Metrics for Datasets and Machine Learning Models, Explanations for These Metrics, and Algorithms to Mitigate Bias in Datasets and Models, n.d., IBM Watson Studio - Model Risk Management, n.d.; Silberg & Manyika, 2019).

    Data quantity, quality and variety

    Problems such as bias and lack of generalizability can be mitigated by ensuring that training data is of sufficient quantity, quality and variety. However, this is difficult to do because patients are often reluctant to share their data for commercial purposes (Aggarwal, Farag, et al., 2021; Ghafur et al., 2020; Trinidad et al., 2020), hospitals and clinics are usually not equipped to make this data available in a useable and secure manner, and organizing and labelling the data is time- consuming and expensive.

    Many datasets can be used for a number of different purposes, and sharing data between companies can help make the process of data collection and organization more efficient, as well as increase the amount of data available for each application. However, developers are often reluctant to share data with each other, or even reveal the exact source of their data, to stay competitive.

    Data protection and privacy

    The development and implementation of AI-based solutions require that patients are explicitly informed about, and give their consent to, the use of their data for a particular purpose and by certain people. This data also has to be adequately protected from data breaches and misuse. Failure to ensure this greatly undermines the public’s trust in AI-based solutions and hinders their adoption. While regulations governing health data privacy state that the collection of fully anonymized data does not require explicit patient consent (General Data Protection Regulation (GDPR) – Official Legal Text, 2016; Office for Civil Rights (OCR), 2012) and in theory protects from the data being misused, whether or not imaging data can be fully anonymized is controversial (Lotan et al., 2020; Murdoch, 2021). Whether consent can be truly informed considering the complexity of the data being acquired, and the resulting myriad of potential future uses of the data, is also disputed (Vayena & Blasimme, 2017).

    IT infrastructure

    Among hospital departments, radiology has always been at the forefront ofdigitalization. AI-based solutions that focus on image processing and interpretation are likely to find the prerequisite infrastructure in most radiology departments, for example for linking imaging equipment to computers for analysis and for archiving images and other outputs. However, most radiology departments are likely to require significant infrastructure upgrades for other applications of AI, particularly those requiring the integration of information from multiple sources and having complex outputs. Moreover, it is important to keep in mind that the distribution of necessary infrastructure is highly unequal across and within countries (Health Ethics & Governance, 2021).

    In terms of computing power, radiology departments will either have to invest resources into the hardware and personnel necessary to run these AI-based solutions or opt for cloud-based solutions. The former comes with an extra cost but allows data processing within the confines of the hospital or clinic’s local network. Cloud-based solutions for computing (known as “infrastructure as a service” or “IaaS”) are often considered the less secure and less trustworthy option, but this depends on a number of factors and is thus not always true (Baccianella & Gough, n.d.). Guidelines on what to consider when procuring cloud-based solutions in healthcare are available (Cloud Security for Healthcare Services, 2021).

    Lack of standardization, interoperability, and integrability

    The problem of infrastructure becomes even more complicated when considering how fragmented the AI medical imaging market currently is (Alexander et al., 2020). It is therefore likely that in the near future a single department will have several dozen AI-based solutions from different vendors running simultaneously. Having a separate self-contained infrastructure (e.g. a workstation or server) for each of these would be incredibly complicated and difficult to manage. Suggested solutions for this have included AI solution “marketplaces”, similar to app stores (Advanced AI Solutions for Radiology, n.d., Curated Marketplace, 2018, Imaging AI Marketplace - Overview, n.d., Sectra Amplifier Marketplace, 2021, The Nuance AI Marketplace for Diagnostic Imaging, n.d.), and development of an overarching vendor-neutral infrastructure (Leiner et al., 2021). The successful implementation of such solutions requires close partnerships between AI solution developers, imaging vendors and information technology companies.

    Interpretability

    It is often impossible to understand exactly how AI- based solutions come to their conclusions, particularly with complex approaches like deep learning. This reduces how transparent the decision-making process for procuring and approving these solutions can be, makes the identification of biases difficult, and makes it harder for clinicians to explain the outputs of these solutions to their patients and to determine whether a solution is working properly or has malfunctioned (Char et al., 2018; Reddy et al., 2020; Vayena et al., 2018; Whittlestone et al., 2019). Some have suggested that techniques that help humans understand how AI- based algorithms made certain decisions or predictions (“interpretable” or “explainable” AI) might help mitigate these challenges. However, others have argued that currently available techniques are unsuitable for understanding individual decisions of an algorithm and have warned against relying on them for ensuring that algorithms work in a safe and reliable way (Ghassemi et al., 2021).

    Liability

    In healthcare systems, a framework of accountability ensures that healthcare workers and medical institutions can be held responsible for adverse effects resulting from their actions. The question of who should be held accountable for the failures of an AI- based solution is complicated. For pharmaceuticals, for example, the accountability for inherent failures in the product or its use often lies with either the manufacturer or the prescriber. One key difference is that AI-based systems are continuously evolving and learning, and so inherently work in a way that is independent of what their developers could have foreseen (Yeung, 2018). To the end-user such as the healthcare worker, the AI- based solution may be opaque and so they may not be able to tell when the solution is malfunctioning or inaccurate (Habli et al., 2020; Yeung, 2018).

    Brittleness

    Despite substantial progress in their development over the past few years, deep learning algorithms are still surprising brittle. This means that, when the algorithm faces a scenario that differs substantially from what it faced during training, it cannot contextualize and often produces nonsensical or inaccurate results. This happens because, unlike humans, most algorithms learn to perceive things within the confines of certain assumptions, but fail to generalize outside these assumptions. As an example of how this can be abused with malicious intent, subtle changes to medical images, imperceptible by humans, can render the results of disease-classifying algorithms inaccurate (Finlayson et al., 2018). The lack of interpretability of many AI-based solutions compounds this problem because it makes it difficult to troubleshoot how they reached the wrong conclusion.

    So far, more than 100 AI-based products have gained conformité européenne (CE) marking or Food and Drug Adminstration (FDA) clearance. These products can be found in continuously updated and searchable online databases curated by the FDA (Center for Devices & Radiological Health, n.d.), the American College of Radiology (Assess-AI, n.d.), and others (AI for Radiology, n.d., The Medical Futurist, n.d.; E. Wu et al., 2021). The increasing number of available products, the inherent complexity of many of these solutions, and the fact that many people who usually make purchasing decisions in hospitals are not familiar with evaluating such products make it important to think carefully when deciding on which product to purchase. Such decisions will need to be made after incorporating input from healthcare workers, information technology (IT) professionals, as well as management, finance, legal, and human resources professionals within hospitals.

    Deciding on whether to purchase an AI-based solution in radiology, as well as which of the increasing number of commercially available solutions to purchase, includes considerations of quality, safety, and finances. Over the past few years, several guidelines have emerged to help potential buyers make these decisions (A Buyer’s Guide to AI in Health and Care, 2020; Omoumi et al., 2021; Reddy et al., 2021), and these guidelines are likely to evolve in the future with changing expectations from customers, regulatory bodies, and stakeholders involved in reimbursement decisions.

    First of all, it has to be clear to the potential buyer what the problem is and whether AI is the appropriate approach to this solution, or whether alternatives exist that are more advantageous on balance. If AI is the appropriate approach, buyers should know exactly what a potential AI-based product’s scope of the solution is - i.e. what specific problem the AI-based solution is designed to solve and in what specific circumstances. This includes whether the solution is intended for screening, diagnosis, monitoring, treatment recommendation or another application. It also includes the intended users of the solution and what kind of specific qualifications or training they are expected to have in order to be able to operate the solution and interpret its outputs. It needs to be clear to buyers whether the solution is intended to replace certain tasks that would normally be performed by the end-user, act as a double-reader, as a triaging mechanism, or for other tasks like quality control. Buyers should also understand whether the solution is intended to provide “new” information (i.e. information that would otherwise be unavailable to the user without the solution), improve the performance of an existing task beyond a human’s or other non-AI-based solution’s performance or if it is intended to save time or other resources.

    Buyers should also have access to information that allows them to assess the potential benefits of the AI solution, and this should be backed up by published scientific evidence for the efficacy and cost-efficiency of the solution. How this is done will depend highly on the solution itself and the context in which it is expected to be deployed, but guidelines for this are available (National Institute for Health and Care Excellence (NICE), n.d.). Some questions to ask here would be: How much of an influence will the solution have on patient management? Will it improve diagnostic performance? Will it save time and money? Will it affect patients’ quality of life? It should also be clear to the buyer who exactly is expected to benefit from the use of this solution (Radiologists? Clinicians? Patients? The healthcare system or society as a whole?).

    As with any healthcare intervention, all AI-based solutions come with potential risks, and these should be made clear to the buyer. Some of these risks might have legal consequences, such as the potential for misdiagnosis. These risks should be quantified, and potential buyers should have a framework for dealing with them, including identifying a framework for accountability within the organizations implementing these solutions. Buyers should also ensure they clearly understand the potential negative effects on radiologists’ training and the potential disruption to radiologists’ workflows associated with the use of these solutions.

    Specifics of the AI solution’s design are also relevant to the decision on whether or not to purchase it. These include how robust the solution is to differences between vendors and scanning parameters, the circumstances under which the algorithm was trained (including potential confounding factors), and the way that performance was assessed. It should also be clear to buyers if and how potential sources of bias were accounted for during development. Because a core characteristic of AI-based solutions is their ability to continuously learn from new data, whether and how exactly this retraining is incorporated into the solution with time should also be clear to the buyer, including whether or not new regulatory approval is needed with each iteration. This also includes whether or not retraining is required, for example, due to changes in imaging equipment at the buyer’s institution.

    The main selling points of many AI-based solutions are ease-of-use and improved workflows. Therefore, potential buyers should carefully scrutinize how these solutions are to be integrated into existing workflows, including inter-operability with PACS and electronic medical record systems. Whether or not the solution requires extra hardware (e.g. graphical processing units) or software (e.g. for visualization of the solution’s outputs), or if it can readily be integrated into the existing information technology infrastructure of the buyer’s organization influences the overall cost of the solution for the buyer and is therefore also a critical consideration. In addition, the degree of manual interaction required, both under normal circumstances and for troubleshooting, should be known to the buyer. All potential users of the AI solution should be involved in the purchasing process to ensure that they are familiar with it and that it meets their professional ethical standards and suits their needs.

    From a regulatory perspective, it should be clear to the buyer whether the solution complies with medical device and data protection regulations. Has the solution been approved in the buyer’s country? If so, under which risk classification? Buyers should also consider creating data flow maps that display how the data flows in the operation of the AI-based solution, including who has access to the data.

    Finally, there are other factors to consider which are not necessarily unique to AI-based solutions and which buyers might be familiar with from purchasing other types of solutions. This includes the licensing model of the solution, how users are to be trained on using the solution, how the solution is maintained, how failures in the solution are dealt with, and whether additional costs are to be expected when scaling up the solution’s implementation (e.g. using the solution for more imaging equipment or more users). This allows the potential buyer to anticipate the current and future costs of purchasing the solution.

    The past decade of increasing interest and progress in AI-based solutions for medical imaging has set the stage for a number of trends that are likely to appear or intensify in the near future.

    Firstly, there is an increasing sentiment that, although AI holds a great deal of promise for interpretive applications (such as the detection of pathology), non-interpretive AI-based solutions might hold the most potential in terms of instilling efficiency into radiology workflows and improving patient experiences. This trend towards involving AI earlier in the patient management process is likely to extend to AI increasingly acting as a clinical decision support system to guide when and which imaging scans are performed.

    For this to happen, AI needs to be integrated into existing clinical information systems, and the specific algorithms used need to be able to handle more varied data. This will likely pave the way for the development of algorithms that are capable of integrating demographic, clinical, and laboratory patient data to make recommendations about patient management (Huang, Pareek, et al., 2020; Rockenbach, 2021). The previously mentioned natural language processing algorithms that have been used to interpret scan requests may be useful candidates for this.

    In addition, we are likely to see AI algorithms that can interpret multiple different types of imaging data from the same patient. Currently, less than 5 % of commercially available AI-based solutions in medical imaging work with more than one imaging modality (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021) despite the fact that the typical patient in a hospital receives multiple imaging scans during their stay (Shinagare et al., 2014). With this, it is also likely that more AI-based solutions will be developed that target hitherto neglected modalities such as nuclear imaging techniques and ultrasound.

    The current market for AI-based solutions in radiology is spread across a relatively large number of companies (Alexander et al., 2020). Potential users are likely to expect a streamlined integration of these products in their workflows, which can be challenging in such a fragmented market. Improved integration can be achieved in several different ways, including with vendor-neutral marketplaces or by the gradual consolidation of providers of AI-based solutions.

    With the expanding use of AI, the issue of trust between AI developers, healthcare professionals, regulators, and patients will become more relevant. It is therefore likely that efforts will intensify to take steps towards strengthening that trust. This will potentially include raising the expected standards of evidence for AI- based solutions (Aggarwal, Sounderajah, et al., 2021; X. Liu et al., 2019; van Leeuwen et al., 2021; Yusuf et al., 2020), making them more transparent through the use and improvement of interpretable AI techniques (Holzinger et al., 2017; Reyes et al., 2020; “Towards Trustable Machine Learning,” 2018), and enhancing techniques for maintaining patient data privacy (G. Kaissis et al., 2021; G. A. Kaissis et al., 2020).

    Furthermore, while most existing regulations stipulate that AI-based algorithms cannot be modified after regulatory approval, this is likely to change in the future. The potential for these algorithms to learn from data acquired after approval and adapt to changing circumstances is a major advantage of AI. Still, frameworks for doing so have thus far been lacking in the healthcare sector. However, promising ideas have recently emerged, including adapting existing hospital quality assurance and improvement frameworks to monitor AI-based algorithms’ performance and the data they are trained on and update the algorithms accordingly (Feng et al., 2022). This will likely require the development of multidisciplinary teams within hospitals consisting of clinicians, IT professionals, and biostatisticians who closely collaborate with model developers and regulators (Feng et al., 2022).

    While the obstacles discussed in previous sections might slow down the adoption of AI in radiology somewhat, the fear of AI potentially replacing radiologists is unlikely to be one of them. A recent survey from Europe showed that most radiologists did not perceive a reduction in their clinical workload after adopting AI-based solutions (European Society of Radiology (ESR), 2022), likely because, at the same time, demand for radiologists’ services has been continuously rising. Studies from around the world have shown that radiology professionals, particularly those with AI exposure and experience, are generally optimistic about the role of AI in their practice (Y. Chen et al., 2021; Huisman et al., 2021; Ooi et al., 2021; Santomartino & Yi, 2022; Scott et al., 2021).

    AI has shown promise in positively impacting virtually every facet of a radiology department’s work - from scheduling and protocolling patient scans to interpreting images and reaching diagnoses. Promising research on AI-based tools in radiology has not yet been widely translated to adoption in routine practice, however, because of a number of complex, partially intertwined issues. Potential solutions exist for many of these challenges, but many of these solutions require further refinement and testing. In the meantime, guidelines are emerging to help potential users of AI-based solutions in radiology navigate the increasing number of commercial products. This encourages their adoption in real-world scenarios, thus allowing their true potential to be uncovered, as well as their weaknesses to be identified and addressed in a safe and effective way. As these incremental improvements are made, these tools will likely evolve to handle more varied data, become integrated into consolidated workflows, become more transparent, and ultimately more useful for increasing efficiency and improving patient care.

    Abdelkhaleq, R., Kim, Y., Khose, S., Kan, P., Salazar-Marioni, S., Giancardo, L., & Sheth, S. A. (2021). Automated prediction of final infarct volume in patients with large-vessel occlusion acute ischemic stroke. Neurosurgical Focus, 51(1), E13. https://doi.org/10.3171/2021.4.FOCUS21134

    Abd-Ellah, M. K., Awad, A. I., Khalaf, A. A. M., & Hamed, H. F. A. (2019). A review on brain tumor diagnosis from MRI images: Practical implications, key achievements, and lessons learned. Magnetic Resonance Imaging, 61, 300–318. https://doi.org/10.1016/j.mri.2019.05.028

    Adeli, E., Shi, F., An, L., Wee, C.-Y., Wu, G., Wang, T., & Shen, D. (2016). Joint feature-sample selection and robust diagnosis of Parkinson’s disease from MRI data. NeuroImage, 141, 206–219. https://doi.org/10.1016/j.neuroimage.2016.05.054

    Adhya, J., Li, C., Eisenmenger, L., Cerejo, R., Tayal, A., Goldberg, M., & Chang, W. (2021). Positive predictive value and stroke workflow outcomes using automated vessel density (RAPID-CTA) in stroke patients: One year experience. The Neuroradiology Journal, 34(5), 476–481. https://doi.org/10.1177/19714009211012353

    Adusumilli, G., Pederson, J. M., Hardy, N., Kallmes, K. M., Hutchison, K., Kobeissi, H., Heiferman, D. M., & Heit, J. J. (2022). Mechanical thrombectomy in anterior vs. posterior circulation stroke: A systematic review and meta-analysis. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 15910199221100796. https://doi. org/10.1177/15910199221100796

    Afzal, H. M. R., Luo, S., Ramadan, S., & Lechner-Scott, J. (2022). The emerging role of artificial intelligence in multiple sclerosis imaging. Multiple Sclerosis, 28(6), 849–858.  https://doi.org/10.1177/1352458520966298

    AI Central. (n.d.). Retrieved July 2, 2022, from https://aicentral.com/

    AI for radiology(n.d.). Retrieved July 2, 2022, from https://grand-challenge.org/aiforradiology/

    Akbari, H., Macyszyn, L., Da, X., Bilello, M., Wolf, R. L., Martinez-Lage, M., Biros, G., Alonso-Basanta, M., O’Rourke, D. M., & Davatzikos, C. (2016). Imaging Surrogates of Infiltration Obtained Via Multiparametric Imaging Pattern Analysis Predict Subsequent Location of Recurrence of Glioblastoma. Neurosurgery, 78(4), 572–580. https://doi.org/10.1227/NEU.0000000000001202

    Akkus, Z., Ali, I., Sedlář, J., Agrawal, J. P., Parney, I. F., Giannini, C., & Erickson, B. J. (2017). Predicting Deletion of Chromosomal Arms 1p/19q in Low-Grade Gliomas from MR Images Using Machine Intelligence. Journal of Digital Imaging, 30(4), 469–476. https://doi.org/10.1007/s10278-017-9984-3

    Amoroso, N., Diacono, D., Fanizzi, A., La Rocca, M., Monaco, A., Lombardi, A., Guaragnella, C., Bellotti, R., Tangaro, S., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Deep learning reveals Alzheimer’s disease onset in MCI subjects: Results from an international challenge. Journal of Neuroscience Methods, 302, 3–9. https://doi.org/10.1016/j. jneumeth.2017.12.011

    Amukotuwa, S. A., Straka, M., Smith, H., Chandra, R. V., Dehkharghani, S., Fischbein, N. J., & Bammer, R. (2019). Automated Detection of Intracranial Large Vessel Occlusions on Computed Tomography Angiography: A Single Center Experience. Stroke; a Journal of Cerebral Circulation, 50(10), 2790–2798. https://doi.org/10.1161/STROKEAHA.119.026259

    Andravizou, A., Dardiotis, E., Artemiadis, A., Sokratous, M., Siokas, V., Tsouris, Z., Aloizou, A.-M., Nikolaidis, I., Bakirtzis, C., Tsivgoulis, G., Deretzi, G., Grigoriadis, N., Bogdanos, D. P., & Hadjigeorgiou, G. M. (2019). Brain atrophy in multiple sclerosis: mechanisms, clinical relevance and treatment options. Auto- Immunity Highlights, 10(1), 7. https://doi.org/10.1186/ s13317-019-0117-5

    Bahar, R. C., Merkaj, S., Cassinelli Petersen, G. I., Tillmanns, N., Subramanian, H., Brim, W. R., Zeevi, T., Staib, L., Kazarian, E., Lin, M., Bousabarah, K., Huttner, A. J., Pala, A., Payabvash, S., Ivanidze, J., Cui, J., Malhotra, A., & Aboian, M. S. (2022). Machine Learning Models for Classifying Highand Low-Grade Gliomas: A Systematic Review and Quality of Reporting Analysis. Frontiers in Oncology, 12, 856231. https://doi.org/10.3389/fonc.2022.856231

    Bar, A., Mauda, M., Turner, Y., Safadi, M., & Elnekave, E. (2019). Improved ICH classification using task-dependent learning. In arXiv [cs.CV]. arXiv. https://uploads-ssl.webflow. com/602a32732226833dce680ffe/61733c14eabf6d96471c5 2b4_7-Bar_bloodNet__Improved_ICH_classification_using_task_ dependent_learning__isbi2018.pdf

    Battineni, G., Chintalapudi, N., Hossain, M. A., Losco, G., Ruocco, C., Sagaro, G. G., Traini, E., Nittari, G., & Amenta, F. (2022). Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering (Basel, Switzerland), 9(8). https://doi.org/10.3390/ bioengineering9080370

    Bendfeldt, K., Taschler, B., Gaetano, L., Madoerin, P., Kuster, P., Mueller-Lenke, N., Amann, M., Vrenken, H., Wottschel, V., Barkhof, F., Borgwardt, S., Klöppel, S., Wicklein, E.- M., Kappos, L., Edan, G., Freedman, M. S., Montalbán, X., Hartung, H.-P., Pohl, C., … Nichols, T. E. (2019). MRI-based prediction of conversion from clinically isolated syndrome to clinically definite multiple sclerosis using SVM and lesion geometry. Brain Imaging and Behavior, 13(5), 1361–1374. https://doi.org/10.1007/s11682-018-9942-9

    BioMind. (n.d.). Retrieved December 20, 2022, from https://biomind.ai/paper

    Birenbaum, A., & Greenspan, H. (2017). Multi-view longitudinal CNN for multiple sclerosis lesion segmentation. Engineering Applications of Artificial Intelligence, 65, 111–118. https://doi.org/10.1016/j.engappai.2017.06.006

    Boldsen, J. K., Engedal, T. S., Pedraza, S., Cho, T.-H., Thomalla, G., Nighoghossian, N., Baron, J.-C., Fiehler, J., Østergaard, L., & Mouridsen, K. (2018). Better Diffusion Segmentation in Acute Ischemic Stroke Through Automatic Tree Learning Anomaly Segmentation. Frontiers in Neuroinformatics, 12, 21. https://doi.org/10.3389/fninf.2018.00021

    Bonacchi, R., Filippi, M., & Rocca, M. A. (2022). Role of artificial intelligence in MS clinical practice. NeuroImage. Clinical, 35, 103065. https://doi.org/10.1016/j.nicl.2022.103065

    Bonacchi, R., Pagani, E., Meani, A., Cacciaguerra, L., Preziosa, P., De Meo, E., Filippi, M., & Rocca, M. A. (2020). Clinical Relevance of Multiparametric MRI Assessment of Cervical Cord Damage in Multiple Sclerosis. Radiology, 296(3), 605–615. https://doi.org/10.1148/radiol.2020200430

    Boutet, A., Madhavan, R., Elias, G. J. B., Joel, S. E., Gramer, R., Ranjan, M., Paramanandam, V., Xu, D., Germann, J., Loh, A., Kalia, S. K., Hodaie, M., Li, B., Prasad, S., Coblentz, A., Munhoz, R. P., Ashe, J., Kucharczyk, W., Fasano, A., & Lozano, A. M. (2021). Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning. Nature Communications, 12(1), 3043. https://doi.org/10.1038/s41467-021-23311-9

    Broderick, J., Connolly, S., Feldmann, E., Hanley, D., Kase, C., Krieger, D., Mayberg, M., Morgenstern, L., Ogilvy, C. S., Vespa, P., Zuccarello, M., American Heart Association, American Stroke Association Stroke Council, High Blood Pressure Research Council, & Quality of Care and Outcomes in Research Interdisciplinary Working Group. (2007). Guidelines for the management of spontaneous intracerebral hemorrhage in adults: 2007 update: a guideline from the American Heart Association/American Stroke Association Stroke Council, High Blood Pressure Research Council, and the Quality of Care and Outcomes in Research Interdisciplinary Working Group. Stroke; a Journal of Cerebral Circulation, 38(6), 2001–2023. https://doi.org/10.1161/STROKEAHA.107.183689

    Bron, E. E., Smits, M., Niessen, W. J., & Klein, S. (2015). Feature Selection Based on the SVM Weight Vector for Classification of Dementia. IEEE Journal of Biomedical and Health Informatics, 19(5), 1617–1626. https://doi.org/10.1109/ JBHI.2015.2432832

    Brosch, T., Tang, L. Y. W., Youngjin Yoo, Li, D. K. B., Traboulsee, A., & Tam, R. (2016). Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation. IEEE Transactions on Medical Imaging, 35(5), 1229–1239. https://doi.org/10.1109/TMI.2016.2528821

    Cacciaguerra, L., Meani, A., Mesaros, S., Radaelli, M., Palace, J., Dujmovic-Basuroski, I., Pagani, E., Martinelli, V., Matthews, L., Drulovic, J., Leite, M. I., Comi, G., Filippi, M., & Rocca, M. A. (2019). Brain and cord imaging features in neuromyelitis optica spectrum disorders. Annals of Neurology, 85(3), 371–384. https://doi.org/10.1002/ana.25411

    Cavedo, E., Tran, P., Thoprakarn, U., Martini, J.-B., Movschin, A., Delmaire, C., Gariel, F., Heidelberg, D., Pyatigorskaya, N., Ströer, S., Krolak-Salmon, P., Cotton, F., Dos Santos, C. L., & Dormont, D. (2022). Validation of an automatic tool for the rapid measurement of brain atrophy and white matter hyperintensity: QyScore®. European Radiology, 32(5), 2949–2961. https://doi.org/10.1007/s00330-021-08385-9

    Chakraborty, S., Aich, S., & Kim, H.-C. (2020). Detection of Parkinson’s Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network. Diagnostics, 10(6), 402. https://doi.org/10.3390/diagnostics10060402

    Chalela, J. A., Kidwell, C. S., Nentwich, L. M., Luby, M., Butman, J. A., Demchuk, A. M., Hill, M. D., Patronas, N., Latour, L., & Warach, S. (2007). Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. The Lancet, 369(9558), 293–298. https://doi.org/10.1016/S0140- 6736(07)60151-2

    Chang, P. D., Chow, D. S., Yang, P. H., Filippi, C. G., & Lignelli, A. (2017). Predicting Glioblastoma Recurrence by Early Changes in the Apparent Diffusion Coefficient Value and Signal Intensity on FLAIR Images. AJR. American Journal of Roentgenology, 208(1), 57–65. https://doi.org/10.2214/AJR.16.16234

    Chang, P. D., Malone, H. R., Bowden, S. G., Chow, D. S., Gill, B. J. A., Ung, T. H., Samanamud, J., Englander, Z. K., Sonabend, A. M., Sheth, S. A., McKhann, G. M., 2nd, Sisti, M. B., Schwartz, L. H., Lignelli, A., Grinband, J., Bruce, J. N., & Canoll, P. (2017). A Multiparametric Model for Mapping Cellularity in Glioblastoma Using Radiographically Localized Biopsies. AJNR. American Journal of Neuroradiology, 38(5), 890–898. https://doi.org/10.3174/ajnr.A5112

    Chang, P., Grinband, J., Weinberg, B. D., Bardis, M., Khy, M., Cadena, G., Su, M.-Y., Cha, S., Filippi, C. G., Bota, D., Baldi, P., Poisson, L. M., Jain, R., & Chow, D. (2018). Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR. American Journal of Neuroradiology, 39(7), 1201–1207. https://doi.org/10.3174/ajnr.A5667

    Cherubini, A., Morelli, M., Nisticó, R., Salsone, M., Arabia, G., Vasta, R., Augimeri, A., Caligiuri, M. E., & Quattrone, A. (2014). Magnetic resonance support vector machine discriminates between Parkinson disease and progressive supranuclear palsy. Movement Disorders: Official Journal of the Movement Disorder Society, 29(2), 266–269. https://doi.org/10.1002/mds.25737

    Chien, H.-W. C., Yang, T.-L., Juang, W.-C., Chen, Y.-Y. A., Li, Y.-C. J., & Chen, C.-Y. (2022). Pilot Report for Intracranial Hemorrhage Detection with Deep Learning Implanted Head Computed Tomography Images at Emergency Department. Journal of Medical Systems, 46(7), 49. https://doi.org/10.1007/ s10916-022-01833-z

    Chilamkurthy, S., Ghosh, R., Tanamala, S., Biviji, M., Campeau, N. G., Venugopal, V. K., Mahajan, V., Rao, P., & Warier, P. (2018). Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. The Lancet, 392(10162), 2388–2396. https://doi.org/10.1016/S0140- 6736(18)31645-3

    Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017). Refining diagnosis of Parkinson’s disease with deep learningbased interpretation of dopamine transporter imaging. NeuroImage. Clinical, 16, 586–594. https://doi.org/10.1016/j. nicl.2017.09.010

    Connor, S. E. J., Tan, G., Fernando, R., & Chaudhury, N. (2005). Computed tomography pseudofractures of the mid face and skull base. Clinical Radiology, 60(12), 1268–1279. https://doi. org/10.1016/j.crad.2005.05.016

    Crous-Bou, M., Minguillón, C., Gramunt, N., & Molinuevo, J. L. (2017). Alzheimer’s disease prevention: from risk factors to early intervention. Alzheimer’s Research & Therapy, 9(1), 1–9. https://doi.org/10.1186/s13195-017-0297-z

    Danelakis, A., Theoharis, T., & Verganelakis, D. A. (2018). Survey of automated multiple sclerosis lesion segmentation techniques on magnetic resonance imaging. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 70, 83–100. https://doi.org/10.1016/j.compmedimag.2018.10.002

    Davatzikos, C., Resnick, S. M., Wu, X., Parmpi, P., & Clark, C. M. (2008). Individual patient diagnosis of AD and FTD via highdimensional pattern classification of MRI. NeuroImage, 41(4), 1220–1227. https://doi.org/10.1016/j.neuroimage.2008.03.050

    Dehkharghani, S., Lansberg, M., Venkatsubramanian, C., Cereda, C., Lima, F., Coelho, H., Rocha, F., Qureshi, A., Haerian, H., Mont’Alverne, F., Copeland, K., & Heit, J. (2021). High-Performance Automated Anterior Circulation CT Angiographic Clot Detection in Acute Stroke: A Multireader Comparison. Radiology, 298(3), 665–670. https://doi.org/10.1148/radiol.2021202734

    Deshpande, H., Maurel, P., & Barillot, C. (2015). Classification of multiple sclerosis lesions using adaptive dictionary learning. Computerized Medical Imaging and Graphics: The Official Journal of the Computerized Medical Imaging Society, 46 Pt 1 , 2–10. https://doi.org/10.1016/j.compmedimag.2015.05.003

    Dolz, J., Desrosiers, C., & Ben Ayed, I. (2018). 3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study. NeuroImage, 170 , 456–470. https://doi.org/10.1016/j.neuroimage.2017.04.039

    Duchesne, S., Rolland, Y., & Vérin, M. (2009). Automated computer differential classification in Parkinsonian Syndromes via pattern analysis on MRI. Academic Radiology, 16(1), 61–70. https://doi.org/10.1016/j.acra.2008.05.024

    Duvekot, M. H. C., van Es, A. C. G. M., Venema, E., Wolff, L., Rozeman, A. D., Moudrous, W., Vermeij, F. H., Lingsma, H. F., Bakker, J., Plaisier, A. S., Hensen, J.-H. J., Lycklama à Nijeholt, G. J., Jan van Doormaal, P., Dippel, D. W. J., Kerkhoff, H., Roozenbeek, B., & van der Lugt, A. (2021). Accuracy of CTA evaluations in daily clinical practice for large and medium vessel occlusion detection in suspected stroke patients. European Stroke Journal, 23969873211058576. https:// doi.org/10.1177/23969873211058576

    Ebinger, M., Galinovic, I., Rozanski, M., Brunecker, P., Endres, M., & Fiebach, J. B. (2010). Fluid-attenuated inversion recovery evolution within 12 hours from stroke onset: a reliable tissue clock? Stroke; a Journal of Cerebral Circulation, 41(2), 250–255. https://doi.org/10.1161/STROKEAHA.109.568410

    Eichinger, P., Zimmer, C., & Wiestler, B. (2020). AI in Radiology: Where are we today in Multiple Sclerosis Imaging? RoFo: Fortschritte Auf Dem Gebiete Der Rontgenstrahlen Und Der Nuklearmedizin, 192(9), 847–853. https://doi.org/10.1055/a-1167-8402

    Eitel, F., Soehler, E., Bellmann-Strobl, J., Brandt, A. U., Ruprecht, K., Giess, R. M., Kuchling, J., Asseyer, S., Weygandt, M., Haynes, J.-D., Scheel, M., Paul, F., & Ritter, K. (2019). Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layerwise relevance propagation. NeuroImage. Clinical, 24, 102003. https://doi.org/10.1016/j.nicl.2019.102003

    EkŞİ, Z., ÇakiroĞlu, M., Öz, C., AralaŞmak, A., Karadelİ, H. H., & Özcan, M. E. (2020). Differentiation of relapsing-remitting and secondary progressive multiple sclerosis: a magnetic resonance spectroscopy study based on machine learning. Arquivos de Neuro-Psiquiatria, 78(12), 789–796. https://doi. org/10.1590/0004-282X20200094

    Ekşi, Z., Özcan, M. E., Çakıroğlu, M., Öz, C., & Aralaşmak, A. (2021). Differentiation of multiple sclerosis lesions and lowgrade brain tumors on MRS data: machine learning approaches. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 42(8), 3389–3395. https://doi.org/10.1007/s10072-020-04950-0

    Eldaya, R. W., Kansagra, A. P., Zei, M., Mason, E., Holder, D., Heitsch, L., Vo, K. D., & Goyal, M. S. (2022). Performance of Automated RAPID Intracranial Hemorrhage Detection in Real-World Practice: A Single-Institution Experience. Journal of Computer Assisted Tomography, 46(5), 770–774. https://doi.org/10.1097/RCT.0000000000001335

    Emon, M. M., Ornob, T. R., & Rahman, M. (2022). Classifications of Skull Fractures using CT Scan Images via CNN with Lazy Learning Approach. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2203.10786

    Erly, W. K., Berger, W. G., Krupinski, E., Seeger, J. F., & Guisto, J. A. (2002). Radiology resident evaluation of head CT scan orders in the emergency department. AJNR. American Journal of Neuroradiology, 23 (1), 103–107. https://www.ncbi.nlm.nih.gov/ pubmed/11827881

    Eshaghi, A., Wottschel, V., Cortese, R., Calabrese, M., Sahraian, M. A., Thompson, A. J., Alexander, D. C., & Ciccarelli, O. (2016). Gray matter MRI differentiates neuromyelitis optica from multiple sclerosis using random forest. Neurology, 87(23), 2463–2470. https://doi.org/10.1212/ WNL.0000000000003395

    Feigin, V. L., Vos, T., Nichols, E., Owolabi, M. O., Carroll, W. M., Dichgans, M., Deuschl, G., Parmar, P., Brainin, M., & Murray, C. (2020). The global burden of neurological disorders: translating evidence into policy. Lancet Neurology, 19(3), 255–265. https://doi.org/10.1016/S1474-4422(19)30411-9

    Ferreti, L. A., Leitao, C. A., Teixeira, B. C. de A., Lopes Neto, F. D. N., ZÉtola, V. F., & Lange, M. C. (2020). The use of e-ASPECTS in acute stroke care: validation of method performance compared to the performance of specialists. Arquivos de Neuro- Psiquiatria, 78(12), 757–761. https://doi.org/10.1590/0004- 282X20200072

    Filippi, M., Preziosa, P., Copetti, M., Riccitelli, G., Horsfield, M. A., Martinelli, V., Comi, G., & Rocca, M. A. (2013). Gray matter damage predicts the accumulation of disability 13 years later in MS. Neurology, 81(20), 1759–1767. https://doi.org/10.1212/01.wnl.0000435551.90824.d0

    Flacke, S., Urbach, H., Keller, E., Träber, F., Hartmann, A., Textor, J., Gieseke, J., Block, W., Folkers, P. J., & Schild, H. H. (2000). Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology, 215(2), 476–482. https://doi.org/10.1148/ radiology.215.2.r00ma09476

    Focke, N. K., Helms, G., Scheewe, S., Pantel, P. M., Bachmann, C. G., Dechent, P., Ebentheuer, J., Mohr, A., Paulus, W., & Trenkwalder, C. (2011). Individual voxel-based subtype prediction can differentiate progressive supranuclear palsy from idiopathic Parkinson syndrome and healthy controls. Human Brain Mapping, 32(11), 1905–1915. https://doi.org/10.1002/hbm.21161

    Fugate, J. E., & Rabinstein, A. A. (2015). Absolute and Relative Contraindications to IV rt-PA for Acute Ischemic Stroke. The Neurohospitalist, 5(3), 110–121. https://doi. org/10.1177/1941874415578532

    Gács, G., Fox, A. J., Barnett, H. J., & Vinuela, F. (1983). CT visualization of intracranial arterial thromboembolism. Stroke; a Journal of Cerebral Circulation, 14(5), 756–762. https://doi. org/10.1161/01.str.14.5.756

    GBD 2016 Parkinson’s Disease Collaborators. (2018). Global, regional, and national burden of Parkinson’s disease, 1990- 2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurology, 17(11), 939–953. https://doi. org/10.1016/S1474-4422(18)30295-3

    Gibson, E., Georgescu, B., Ceccaldi, P., Trigan, P.-H., Yoo, Y., Das, J., Re, T. J., Rs, V., Balachandran, A., Eibenberger, E., Chekkoury, A., Brehm, B., Bodanapally, U. K., Nicolaou, S., Sanelli, P. C., Schroeppel, T. J., Flohr, T., Comaniciu, D., & Lui, Y. W. (2022). Artificial Intelligence with Statistical Confidence Scores for Detection of Acute or Subacute Hemorrhage on Noncontrast CT Head Scans. Radiology. Artificial Intelligence, 4(3), e210115. https://doi.org/10.1148/ryai.210115

    Ginat, D. (2021). Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection of Intracranial Hemorrhage on CT. Brain Sciences, 11(7). https://doi.org/10.3390/brainsci11070832

    Goebel, J., Stenzel, E., Guberina, N., Wanke, I., Koehrmann, M., Kleinschnitz, C., Umutlu, L., Forsting, M., Moenninghoff, C., & Radbruch, A. (2018). Automated ASPECT rating: comparison between the Frontier ASPECT Score software and the Brainomix software. Neuroradiology, 60(12), 1267–1272. https://doi.org/10.1007/s00234-018-2098-x

    Goldberg-Zimring, D., Achiron, A., Miron, S., Faibel, M., & Azhari, H. (1998). Automated detection and characterization of multiple sclerosis lesions in brain MR images. Magnetic Resonance Imaging, 16(3), 311–318. https://doi.org/10.1016/ s0730-725x(97)00300-7

    Guberina, N., Dietrich, U., Radbruch, A., Goebel, J., Deuschl, C., Ringelstein, A., Köhrmann, M., Kleinschnitz, C., Forsting, M., & Mönninghoff, C. (2018). Detection of early infarction signs with machine learning-based diagnosis by means of the Alberta Stroke Program Early CT score (ASPECTS) in the clinical routine. Neuroradiology, 60(9), 889–901. https://doi.org/10.1007/ s00234-018-2066-5

    Hakim, A., Christensen, S., Winzeck, S., Lansberg, M. G., Parsons, M. W., Lucas, C., Robben, D., Wiest, R., Reyes, M., & Zaharchuk, G. (2021). Predicting Infarct Core From Computed Tomography Perfusion in Acute Ischemia With Machine Learning: Lessons From the ISLES Challenge. Stroke; a Journal of Cerebral Circulation, 52(7), 2328–2337. https://doi.org/10.1161/STROKEAHA.120.030696

    Haller, S., Badoud, S., Nguyen, D., Barnaure, I., Montandon, M.-L., Lovblad, K.-O., & Burkhard, P. R. (2013). Differentiation between Parkinson disease and other forms of Parkinsonism using support vector machine analysis of susceptibilityweighted imaging (SWI): initial results. European Radiology, 23(1), 12–19. https://doi.org/10.1007/s00330-012-2579-y

    Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K. O., & Burkhard, P. R. (2012). Individual detection of patients with Parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. AJNR. American Journal of Neuroradiology, 33(11), 2123–2128. https://doi.org/10.3174/ajnr.A3126

    Han, L., & Kamdar, M. R. (2018). MRI to MGMT: predicting methylation status in glioblastoma patients using convolutional recurrent neural networks. Pacific Symposium on Biocomputing. Pacific Symposium on Biocomputing, 23, 331–342. https://www.ncbi.nlm.nih.gov/pubmed/29218894

    Han, Y., Yang, Y., Shi, Z.-S., Zhang, A.-D., Yan, L.-F., Hu, Y.-C., Feng, L.-L., Ma, J., Wang, W., & Cui, G.-B. (2021). Distinguishing brain inflammation from grade II glioma in population without contrast enhancement: a radiomics analysis based on conventional MRI. European Journal of Radiology, 134, 109467. https://doi.org/10.1016/j.ejrad.2020.109467

    Hassan, A. E., Ringheanu, V. M., Rabah, R. R., Preston, L., Tekle, W. G., & Qureshi, A. I. (2020). Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Interventional Neuroradiology: Journal of Peritherapeutic Neuroradiology, Surgical Procedures and Related Neurosciences, 26(5), 615–622. https://doi.org/10.1177/1591019920953055

    Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Courville, A., Bengio, Y., Pal, C., Jodoin, P.-M., & Larochelle, H. (2017). Brain tumor segmentation with Deep Neural Networks. Medical Image Analysis, 35, 18–31. https://doi.org/10.1016/j.media.2016.05.004

    Heimer, J., Thali, M. J., & Ebert, L. (2018). Classification based on the presence of skull fractures on curved maximum intensity skull projections by means of deep learning. Journal of Forensic Radiology and Imaging, 14, 16–20. https://doi.org/10.1016/j. jofri.2018.08.001

    Heit, J. J., Coelho, H., Lima, F. O., Granja, M., Aghaebrahim, A., Hanel, R., Kwok, K., Haerian, H., Cereda, C. W., Venkatasubramanian, C., Dehkharghani, S., Carbonera, L. A., Wiener, J., Copeland, K., & Mont’Alverne, F. (2021). Automated Cerebral Hemorrhage Detection Using RAPID. AJNR. American Journal of Neuroradiology, 42(2), 273–278. https://doi.org/10.3174/ajnr.A6926

    Herweh, C., Ringleb, P. A., Rauch, G., Gerry, S., Behrens, L., Möhlenbruch, M., Gottorf, R., Richter, D., Schieber, S., & Nagel, S. (2016). Performance of e-ASPECTS software in comparison to that of stroke physicians on assessing CT scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 11(4), 438–445. https://doi.org/10.1177/1747493016632244

    Hirschauer, T. J., Adeli, H., & Buford, J. A. (2015). Computer- Aided Diagnosis of Parkinson’s Disease Using Enhanced Probabilistic Neural Network. Journal of Medical Systems, 39(11), 179. https://doi.org/10.1007/s10916-015-0353-9

    Hitziger, S., Ling, W. X., Fritz, T., D’Albis, T., Lemke, A., & Grilo, J. (2022). Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies. Frontiers in Neuroscience, 16, 964250. https://doi.org/10.3389/ fnins.2022.964250

    Hoelter, P., Muehlen, I., Goelitz, P., Beuscher, V., Schwab, S., & Doerfler, A. (2020). Automated ASPECT scoring in acute ischemic stroke: comparison of three software tools. Neuroradiology, 62(10), 1231–1238. https://doi.org/10.1007/ s00234-020-02439-3

    Hu, L. S., Ning, S., Eschbacher, J. M., Baxter, L. C., Gaw, N., Ranjbar, S., Plasencia, J., Dueck, A. C., Peng, S., Smith, K. A., Nakaji, P., Karis, J. P., Quarles, C. C., Wu, T., Loftus, J. C., Jenkins, R. B., Sicotte, H., Kollmeyer, T. M., O’Neill, B. P., … Mitchell, J. R. (2017). Radiogenomics to characterize regional genetic heterogeneity in glioblastoma. Neuro-Oncology, 19(1), 128–137. https://doi.org/10.1093/neuonc/now135

    Huppertz, H.-J., Möller, L., Südmeyer, M., Hilker, R., Hattingen, E., Egger, K., Amtage, F., Respondek, G., Stamelou, M., Schnitzler, A., Pinkhardt, E. H., Oertel, W. H., Knake, S., Kassubek, J., & Höglinger, G. U. (2016). Differentiation of neurodegenerative parkinsonian syndromes by volumetric magnetic resonance imaging analysis and support vector machine classification. Movement Disorders: Official Journal of the Movement Disorder Society, 31(10), 1506– 1517. https://doi.org/10.1002/mds.26715

    Hwang, D. Y., Silva, G. S., Furie, K. L., & Greer, D. M. (2012). Comparative sensitivity of computed tomography vs. magnetic resonance imaging for detecting acute posterior fossa infarct. The Journal of Emergency Medicine, 42(5), 559–565. https://doi. org/10.1016/j.jemermed.2011.05.101

    Ion-Mărgineanu, A., Kocevar, G., Stamile, C., Sima, D. M., Durand-Dubief, F., Van Huffel, S., & Sappey-Marinier, D. (2017). Machine Learning Approach for Classifying Multiple Sclerosis Courses by Combining Clinical Data with Lesion Loads and Magnetic Resonance Metabolic Features. Frontiers in Neuroscience, 11, 398. https://doi.org/10.3389/fnins.2017.00398

    Jain, A., Malhotra, A., & Payabvash, S. (2021). Imaging of Spontaneous Intracerebral Hemorrhage. Neuroimaging Clinics of North America, 31(2), 193–203. https://doi.org/10.1016/j. nic.2021.02.003

    Jain, S., Ribbens, A., Sima, D. M., Cambron, M., De Keyser, J., Wang, C., Barnett, M. H., Van Huffel, S., Maes, F., & Smeets, D. (2016). Two Time Point MS Lesion Segmentation in Brain MRI: An Expectation-Maximization Framework. Frontiers in Neuroscience, 10, 576. https://doi.org/10.3389/fnins.2016.00576

    Jang, B.-S., Jeon, S. H., Kim, I. H., & Kim, I. A. (2018). Prediction of Pseudoprogression versus Progression using Machine Learning Algorithm in Glioblastoma. Scientific Reports, 8(1), 12516. https://doi.org/10.1038/s41598-018-31007-2

    Jang, B.-S., Park, A. J., Jeon, S. H., Kim, I. H., Lim, D. H., Park, S.-H., Lee, J. H., Chang, J. H., Cho, K. H., Kim, J. H., Sunwoo, L., Choi, S. H., & Kim, I. A. (2020). Machine Learning Model to Predict Pseudoprogression Versus Progression in Glioblastoma Using MRI: A Multi-Institutional Study (KROG 18-07). Cancers, 12(9). https://doi.org/10.3390/cancers12092706

    Jayachandran Preetha, C., Meredig, H., Brugnara, G., Mahmutoglu, M. A., Foltyn, M., Isensee, F., Kessler, T., Pflüger, I., Schell, M., Neuberger, U., Petersen, J., Wick, A., Heiland, S., Debus, J., Platten, M., Idbaih, A., Brandes, A. A., Winkler, F., van den Bent, M. J., … Vollmuth, P. (2021). Deeplearning- based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study. The Lancet. Digital Health, 3(12), e784–e794. https://doi.org/10.1016/S2589-7500(21)00205-3

    Jiang, L., Wang, S., Ai, Z., Shen, T., Zhang, H., Duan, S., Chen, Y.-C., Yin, X., & Sun, J. (2022). Development and external validation of a stability machine learning model to identify wake-up stroke onset time from MRI. European Radiology, 32(6), 3661–3669. https://doi.org/10.1007/s00330-021-08493-6

    Kanber, B., Nachev, P., Barkhof, F., Calvi, A., Cardoso, J., Cortese, R., Prados, F., Sudre, C. H., Tur, C., Ourselin, S., & Ciccarelli, O. (2019). High-dimensional detection of imaging response to treatment in multiple sclerosis. NPJ Digital Medicine, 2, 49. https://doi.org/10.1038/s41746-019-0127-8

    Karimian, A., & Jafari, S. (2015). A New Method to Segment the Multiple Sclerosis Lesions on Brain Magnetic Resonance Images. Journal of Medical Signals and Sensors, 5(4), 238–244. https:// www.ncbi.nlm.nih.gov/pubmed/26955567

    Kickingereder, P., Bonekamp, D., Nowosielski, M., Kratz, A., Sill, M., Burth, S., Wick, A., Eidel, O., Schlemmer, H.-P., Radbruch, A., Debus, J., Herold-Mende, C., Unterberg, A., Jones, D., Pfister, S., Wick, W., von Deimling, A., Bendszus, M., & Capper, D. (2016). Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric and Multiregional MR Imaging Features. Radiology, 281(3), 907–918. https://doi. org/10.1148/radiol.2016161382

    Kickingereder, P., Isensee, F., Tursunova, I., Petersen, J., Neuberger, U., Bonekamp, D., Brugnara, G., Schell, M., Kessler, T., Foltyn, M., Harting, I., Sahm, F., Prager, M., Nowosielski, M., Wick, A., Nolden, M., Radbruch, A., Debus, J., Schlemmer, H.-P., … Maier-Hein, K. H. (2019). Automated quantitative tumour response assessment of MRI in neurooncology with artificial neural networks: a multicentre, retrospective study. The Lancet Oncology, 20(5), 728–740. https://doi.org/10.1016/S1470-2045(19)30098-1

    Kim, B. J., Kim, Y.-H., Kim, Y.-J., Ahn, S. H., Lee, D. H., Kwon, S. U., Kim, S. J., Kim, J. S., & Kang, D.-W. (2014). Color-coded fluid-attenuated inversion recovery images improve inter-rater reliability of fluid-attenuated inversion recovery signal changes within acute diffusion-weighted image lesions. Stroke; a Journal of Cerebral Circulation, 45(9), 2801–2804. https://doi.org/10.1161/STROKEAHA.114.006515

    Kim, J. Y., Park, J. E., Jo, Y., Shim, W. H., Nam, S. J., Kim, J. H., Yoo, R.-E., Choi, S. H., & Kim, H. S. (2019). Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro-Oncology, 21(3), 404–414. https://doi.org/10.1093/neuonc/noy133

    Kim, M., Kim, H. S., Kim, H. J., Park, J. E., Park, S. Y., Kim, Y.- H., Kim, S. J., Lee, J., & Lebel, M. R. (2021). Thin-Slice Pituitary MRI with Deep Learning-based Reconstruction: Diagnostic Performance in a Postoperative Setting. Radiology, 298(1), 114–122. https://doi.org/10.1148/radiol.2020200723

    Kniep, H. C., Madesta, F., Schneider, T., Hanning, U., Schönfeld, M. H., Schön, G., Fiehler, J., Gauer, T., Werner, R., & Gellissen, S. (2019). Radiomics of Brain MRI: Utility in Prediction of Metastatic Tumor Type. Radiology, 290(2), 479–487. https://doi.org/10.1148/radiol.2018180946

    Kniep, H. C., Sporns, P. B., Broocks, G., Kemmling, A., Nawabi, J., Rusche, T., Fiehler, J., & Hanning, U. (2020). Posterior circulation stroke: machine learning-based detection of early ischemic changes in acute non-contrast CT scans. Journal of Neurology, 267(9), 2632–2641. https://doi. org/10.1007/s00415-020-09859-4

    Knopman, D. S., Amieva, H., Petersen, R. C., Chételat, G., Holtzman, D. M., Hyman, B. T., Nixon, R. A., & Jones, D. T. (2021). Alzheimer disease. Nature Reviews. Disease Primers, 7(1), 33. https://doi.org/10.1038/s41572-021-00269-y

    Kocevar, G., Stamile, C., Hannoun, S., Cotton, F., Vukusic, S., Durand-Dubief, F., & Sappey-Marinier, D. (2016). Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses. Frontiers in Neuroscience, 10, 478. https://doi.org/10.3389/fnins.2016.00478

    Kouli, O., Hassane, A., Badran, D., Kouli, T., Hossain-Ibrahim, K., & Steele, J. D. (2022). Automated brain tumor identification using magnetic resonance imaging: A systematic review and meta-analysis. Neuro-Oncology Advances, 4(1), vdac081. https:// doi.org/10.1093/noajnl/vdac081

    Kuang, H., Najm, M., Chakraborty, D., Maraj, N., Sohn, S. I., Goyal, M., Hill, M. D., Demchuk, A. M., Menon, B. K., & Qiu, W. (2019). Automated ASPECTS on Noncontrast CT Scans in Patients with Acute Ischemic Stroke Using Machine Learning. AJNR. American Journal of Neuroradiology, 40(1), 33–38. https://doi.org/10.3174/ajnr.A5889

    Kuang, Z., Deng, X., Yu, L., Zhang, H., Lin, X., & Ma, H. (2020). Skull R-CNN: A CNN-based network for the skull fracture detection. In T. Arbel, I. Ben Ayed, M. de Bruijne, M. Descoteaux, H. Lombaert, & C. Pal (Eds.), Proceedings of the Third Conference on Medical Imaging with Deep Learning (Vol. 121, pp. 382–392). PMLR. https://proceedings.mlr.press/v121/kuang20a.html

    Kushibar, K., Valverde, S., González-Villà, S., Bernal, J., Cabezas, M., Oliver, A., & Lladó, X. (2018). Automated sub-cortical brain structure segmentation combining spatial and deep convolutional features. Medical Image Analysis, 48, 177–186. https://doi.org/10.1016/j.media.2018.06.006

    Lamptey, R. N. L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., & Singh, J. (2022). A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 23(3). https://doi.org/10.3390/ ijms23031851

    Leao, D. J., Craig, P. G., Godoy, L. F., Leite, C. C., & Policeni, B. (2020). Response Assessment in Neuro-Oncology Criteria for Gliomas: Practical Approach Using Conventional and Advanced Techniques. AJNR. American Journal of Neuroradiology, 41(1), 10–20. https://doi.org/10.3174/ajnr.A6358

    Lebedev, A. V., Westman, E., Van Westen, G. J. P., Kramberger, M. G., Lundervold, A., Aarsland, D., Soininen, H., Kłoszewska, I., Mecocci, P., Tsolaki, M., Vellas, B., Lovestone, S., Simmons, A., & Alzheimer’s Disease Neuroimaging Initiative and the AddNeuroMed consortium. (2014). Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. NeuroImage. Clinical, 6, 115–125. https://doi.org/10.1016/j. nicl.2014.08.023

    Lee, D. H., Park, J. E., Nam, Y. K., Lee, J., Kim, S., Kim, Y.-H., & Kim, H. S. (2021). Deep learning-based thin-section MRI reconstruction improves tumour detection and delineation in pre- and post-treatment pituitary adenoma. Scientific Reports, 11(1), 21302. https://doi.org/10.1038/s41598-021-00558-2

    Lee, G., Nho, K., Kang, B., Sohn, K.-A., Kim, D., & for Alzheimer’s Disease Neuroimaging Initiative. (2019). Predicting Alzheimer’s disease progression using multi-modal deep learning approach. Scientific Reports, 9(1), 1952. https://doi.org/10.1038/s41598-018-37769-z

    Lee, H., Lee, E.-J., Ham, S., Lee, H.-B., Lee, J. S., Kwon, S. U., Kim, J. S., Kim, N., & Kang, D.-W. (2020). Machine Learning Approach to Identify Stroke Within 4.5 Hours. Stroke; a Journal of Cerebral Circulation, 51(3), 860–866. https://doi.org/10.1161/ STROKEAHA.119.027611

    Lisowska, A., O’Neil, A., Dilys, V., Daykin, M., Beveridge, E., Muir, K., Mclaughlin, S., & Poole, I. (2017). Context-Aware Convolutional Neural Networks for Stroke Sign Detection in Noncontrast CT Scans. Medical Image Understanding and Analysis, 494–505. https://doi.org/10.1007/978-3-319-60964-5_43

    Long, D., Wang, J., Xuan, M., Gu, Q., Xu, X., Kong, D., & Zhang, M. (2012). Automatic classification of early Parkinson’s disease with multi-modal MR imaging. PloS One, 7(11), e47714. https://doi.org/10.1371/journal.pone.0047714

    Lopatina, A., Ropele, S., Sibgatulin, R., Reichenbach, J. R., & Güllmar, D. (2020). Investigation of Deep-Learning- Driven Identification of Multiple Sclerosis Patients Based on Susceptibility-Weighted Images Using Relevance Analysis. Frontiers in Neuroscience, 14, 609468. https://doi.org/10.3389/ fnins.2020.609468

    Lublin, F. D., Reingold, S. C., Cohen, J. A., Cutter, G. R., Sørensen, P. S., Thompson, A. J., Wolinsky, J. S., Balcer, L. J., Banwell, B., Barkhof, F., Bebo, B., Jr, Calabresi, P. A., Clanet, M., Comi, G., Fox, R. J., Freedman, M. S., Goodman, A. D., Inglese, M., Kappos, L., … Polman, C. H. (2014). Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology, 83(3), 278–286. https://doi.org/10.1212/ WNL.0000000000000560

    Lu, D., Popuri, K., Ding, G. W., Balachandar, R., Beg, M. F., & Alzheimer’s Disease Neuroimaging Initiative. (2018). Multimodal and Multiscale Deep Neural Networks for the Early Diagnosis of Alzheimer’s Disease using structural MR and FDG-PET images. Scientific Reports, 8(1), 5697. https://doi. org/10.1038/s41598-018-22871-z

    Mackey J, Kleindorfer D, Sucharew H, et al. Population-based study of wake-up strokes. Neurology. 2011;76(19):1662-1667. doi:10.1212/WNL.0b013e318219fb30

    Maegerlein, C., Fischer, J., Mönch, S., Berndt, M., Wunderlich, S., Seifert, C. L., Lehm, M., Boeckh-Behrens, T., Zimmer, C., & Friedrich, B. (2019). Automated Calculation of the Alberta Stroke Program Early CT Score: Feasibility and Reliability. Radiology, 291(1), 141–148. https://doi.org/10.1148/ radiol.2019181228

    Mangeat, G., Ouellette, R., Wabartha, M., De Leener, B., Plattén, M., Danylaité Karrenbauer, V., Warntjes, M., Stikov, N., Mainero, C., Cohen-Adad, J., & Granberg, T. (2020). Machine Learning and Multiparametric Brain MRI to Differentiate Hereditary Diffuse Leukodystrophy with Spheroids from Multiple Sclerosis. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 30(5), 674–682. https://doi.org/10.1111/jon.12725

    Marks, M. P., Holmgren, E. B., Fox, A. J., Patel, S., von Kummer, R., & Froehlich, J. (1999). Evaluation of early computed tomographic findings in acute ischemic stroke. Stroke; a Journal of Cerebral Circulation, 30(2), 389–392. https://doi.org/10.1161/01.str.30.2.389

    Marquand, A. F., Filippone, M., Ashburner, J., Girolami, M., Mourao-Miranda, J., Barker, G. J., Williams, S. C. R., Leigh, P. N., & Blain, C. R. V. (2013). Automated, high accuracy classification of Parkinsonian disorders: a pattern recognition approach. PloS One, 8(7), e69237. https://doi.org/10.1371/ journal.pone.0069237

    Marzullo, A., Kocevar, G., Stamile, C., Durand-Dubief, F., Terracina, G., Calimeri, F., & Sappey-Marinier, D. (2019). Classification of Multiple Sclerosis Clinical Profiles via Graph Convolutional Neural Networks. Frontiers in Neuroscience, 13, 594. https://doi.org/10.3389/fnins.2019.00594

    Matthews, P. M., Roncaroli, F., Waldman, A., Sormani, M. P., De Stefano, N., Giovannoni, G., & Reynolds, R. (2016). A practical review of the neuropathology and neuroimaging of multiple sclerosis. Practical Neurology, 16(4), 279–287. https://doi.org/10.1136/practneurol-2016-001381

    McGinley, M. P., Goldschmidt, C. H., & Rae-Grant, A. D. (2021). Diagnosis and Treatment of Multiple Sclerosis: A Review.JAMA: The Journal of the American Medical Association, 325(8), 765–779. https://doi.org/10.1001/jama.2020.26858

    McLouth, J., Elstrott, S., Chaibi, Y., Quenet, S., Chang, P. D., Chow, D. S., & Soun, J. E. (2021). Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion. Frontiers in Neurology, 12, 656112. https://doi.org/10.3389/fneur.2021.656112

    Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M.-A., Arbel, T., Avants, B. B., Ayache, N., Buendia, P., Collins, D. L., Cordier, N., … Van Leemput, K. (2015). The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging, 34(10), 1993–2024. https://doi.org/10.1109/ TMI.2014.2377694

    Merkaj, S., Bahar, R. C., Zeevi, T., Lin, M., Ikuta, I., Bousabarah, K., Cassinelli Petersen, G. I., Staib, L., Payabvash, S., Mongan, J. T., Cha, S., & Aboian, M. S. (2022). Machine Learning Tools for Image-Based Glioma Grading and the Quality of Their Reporting: Challenges and Opportunities. Cancers, 14(11). https://doi.org/10.3390/cancers14112623

    Moazami, F., Lefevre-Utile, A., Papaloukas, C., & Soumelis, V. (2021). Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Frontiers in Immunology, 12, 700582. https://doi.org/10.3389/ fimmu.2021.700582

    Mohd Saad, N., Abdullah, A. R., Mohd Noor, N. S., & Mohd Ali, N. (2019). Automated Segmentation And Classification Technique For Brain Stroke. International Journal of Electrical, Computer, and Systems Engineering, 9(3), 1832–1841. https://doi.org/10.11591/ijece.v9i3.pp1832-1841

    Mokin, M., Ansari, S. A., McTaggart, R. A., Bulsara, K. R., Goyal, M., Chen, M., Fraser, J. F., & Society of NeuroInterventional Surgery. (2019). Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): report of the SNIS Standards and Guidelines Committee. Journal of Neurointerventional Surgery, 11(3), 215–220. https://doi.org/10.1136/ neurintsurg-2018-014640

    Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. NeuroImage, 104, 398–412. https://doi.org/10.1016/j.neuroimage.2014.10.002

    Morey, J. R., Zhang, X., Yaeger, K. A., Fiano, E., Marayati, N. F., Kellner, C. P., De Leacy, R. A., Doshi, A., Tuhrim, S., & Fifi, J. T. (2021). Real-World Experience with Artificial Intelligence- Based Triage in Transferred Large Vessel Occlusion Stroke Patients. Cerebrovascular Diseases, 50(4), 450–455. https://doi.org/10.1159/000515320

    Murray, N. M., Unberath, M., Hager, G. D., & Hui, F. K. (2020). Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. Journal of Neurointerventional Surgery, 12(2), 156–164. https://doi.org/10.1136/neurintsurg-2019-015135

    Nagel, S., Sinha, D., Day, D., Reith, W., Chapot, R., Papanagiotou, P., Warburton, E. A., Guyler, P., Tysoe, S., Fassbender, K., Walter, S., Essig, M., Heidenrich, J., Konstas, A. A., Harrison, M., Papadakis, M., Greveson, E., Joly, O., Gerry, S., … Grunwald, I. Q. (2017). e-ASPECTS software is non-inferior to neuroradiologists in applying the ASPECT score to computed tomography scans of acute ischemic stroke patients. International Journal of Stroke: Official Journal of the International Stroke Society, 12(6), 615–622. https://doi. org/10.1177/1747493016681020

    Nazari-Farsani, S., Nyman, M., Karjalainen, T., Bucci, M., Isojärvi, J., & Nummenmaa, L. (2020). Automated segmentation of acute stroke lesions using a data-driven anomaly detection on diffusion weighted MRI. Journal of Neuroscience Methods, 333, 108575. https://doi.org/10.1016/j. jneumeth.2019.108575

    Neeb, H., & Schenk, J. (2019). Multivariate prediction of multiple sclerosis using robust quantitative MR-based image metrics. Zeitschrift Fur Medizinische Physik, 29(3), 262–271. https://doi.org/10.1016/j.zemedi.2018.10.004

    Ocasio, E., & Duong, T. Q. (2021). Deep learning prediction of mild cognitive impairment conversion to Alzheimer’s disease at 3 years after diagnosis using longitudinal and whole-brain 3D MRI. PeerJ. Computer Science, 7, e560. https://doi.org/10.7717/ peerj-cs.560

    Olive-Gadea, M., Crespo, C., Granes, C., Hernandez-Perez, M., Pérez de la Ossa, N., Laredo, C., Urra, X., Carlos Soler, J., Soler, A., Puyalto, P., Cuadras, P., Marti, C., & Ribo, M. (2020). Deep Learning Based Software to Identify Large Vessel Occlusion on Noncontrast Computed Tomography. Stroke; a Journal of Cerebral Circulation, 51(10), 3133–3137. https://doi.org/10.1161/ STROKEAHA.120.030326

    Olive-Gadea, M., Martins, N., Boned, S., Carvajal, J., Moreno, M. J., Muchada, M., Molina, C. A., Tomasello, A., Ribo, M., & Rubiera, M. (2019). Baseline ASPECTS and e-ASPECTS Correlation with Infarct Volume and Functional Outcome in Patients Undergoing Mechanical Thrombectomy. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(2), 198–202. https://doi.org/10.1111/ jon.12564

    Olthof, A. W., van Ooijen, P. M. A., & Rezazade Mehrizi, M. H. (2020). Promises of artificial intelligence in neuroradiology: a systematic technographic review. Neuroradiology, 62(10), 1265–1278. https://doi.org/10.1007/s00234-020-02424-w

    Öman, O., Mäkelä, T., Salli, E., Savolainen, S., & Kangasniemi, M. (2019). 3D convolutional neural networks applied to CT angiography in the detection of acute ischemic stroke. European Radiology Experimental, 3(1), 8. https://doi.org/10.1186/s41747-019-0085-6

    Ozsahin, I., Sekeroglu, B., Pwavodi, P. C., & Mok, G. S. P. (2020). High-accuracy Automated Diagnosis of Parkinson’s Disease. Current Medical Imaging Reviews, 16(6), 688–694. https://doi.org/10.2174/1573405615666190620113607

    Pagan, F. L. (2012). Improving outcomes through early diagnosis of Parkinson’s disease. The American Journal of Managed Care, 18(7 Suppl), S176–S182. https://www.ncbi.nlm. nih.gov/pubmed/23039866

    Park, J. E., Kim, H. S., Park, S. Y., Nam, S. J., Chun, S.-M., Jo, Y., & Kim, J. H. (2020). Prediction of Core Signaling Pathway by Using Diffusion- and Perfusion-based MRI Radiomics and Next-generation Sequencing in Isocitrate Dehydrogenase Wildtype Glioblastoma. Radiology, 294(2), 388–397. https://doi. org/10.1148/radiol.2019190913

    Peng, B., Wang, S., Zhou, Z., Liu, Y., Tong, B., Zhang, T., & Dai, Y. (2017). A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neuroscience Letters, 651, 88–94. https://doi. org/10.1016/j.neulet.2017.04.034

    Petersen, R. C. (2016). Mild Cognitive Impairment. Continuum, 22(2 Dementia), 404–418. https://doi.org/10.1212/CON.0000000000000313

    Piccardo, A., Cappuccio, R., Bottoni, G., Cecchin, D., Mazzella, L., Cirone, A., Righi, S., Ugolini, M., Bianchi, P., Bertolaccini, P., Lorenzini, E., Massollo, M., Castaldi, A., Fiz, F., Strada, L., Cistaro, A., & Del Sette, M. (2021). The role of the deep convolutional neural network as an aid to interpreting brain [18F]DOPA PET/CT in the diagnosis of Parkinson’s disease. European Radiology, 31(9), 7003–7011. https://doi.org/10.1007/ s00330-021-07779-z

    Pirson, F. A. V., Boodt, N., Brouwer, J., Bruggeman, A. A. E., den Hartog, S. J., Goldhoorn, R.-J. B., Langezaal, L. C. M., Staals, J., van Zwam, W. H., van der Leij, C., Brans, R. J. B., Majoie, C. B. L. M., Coutinho, J. M., Emmer, B. J., Dippel, D. W. J., van der Lugt, A., Vos, J.-A., van Oostenbrugge, R. J., Schonewille, W. J., & MR CLEAN Registry Investigators†. (2022). Endovascular Treatment for Posterior Circulation Stroke in Routine Clinical Practice: Results of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke in the Netherlands Registry. Stroke; a Journal of Cerebral Circulation, 53(3), 758–768. https://doi.org/10.1161/ STROKEAHA.121.034786

    Pläschke, R. N., Cieslik, E. C., Müller, V. I., Hoffstaedter, F., Plachti, A., Varikuti, D. P., Goosses, M., Latz, A., Caspers, S., Jockwitz, C., Moebus, S., Gruber, O., Eickhoff, C. R., Reetz, K., Heller, J., Südmeyer, M., Mathys, C., Caspers, J., Grefkes, C., … Eickhoff, S. B. (2017). On the integrity of functional brain networks in schizophrenia, Parkinson’s disease, and advanced age: Evidence from connectivity-based single-subject classification. Human Brain Mapping, 38(12), 5845–5858. https://doi.org/10.1002/hbm.23763

    Polson, J. S., Zhang, H., Nael, K., Salamon, N., Yoo, B. Y., El-Saden, S., Starkman, S., Kim, N., Kang, D.-W., Speier, W. F., 4th, & Arnold, C. W. (2022). Identifying acute ischemic stroke patients within the thrombolytic treatment window using deep learning. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging. https://doi.org/10.1111/jon.13043

    Potreck, A., Weyland, C. S., Seker, F., Neuberger, U., Herweh, C., Hoffmann, A., Nagel, S., Bendszus, M., & Mutke, M. A. (2022). Accuracy and prognostic role of NCCT-ASPECTS depend on time from acute stroke symptom-onset for both human and machine-learning based evaluation. Clinical Neuroradiology, 32(1), 133–140. https://doi.org/10.1007/s00062-021-01110-5

    Powers, W. J., Rabinstein, A. A., Ackerson, T., Adeoye, O. M., Bambakidis, N. C., Becker, K., Biller, J., Brown, M., Demaerschalk, B. M., Hoh, B., Jauch, E. C., Kidwell, C. S., Leslie-Mazwi, T. M., Ovbiagele, B., Scott, P. A., Sheth, K. N., Southerland, A. M., Summers, D. V., & Tirschwell, D. L. (2018). 2018 Guidelines for the Early Management of Patients With Acute Ischemic Stroke: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke; a Journal of Cerebral Circulation, 49(3), e46–e110. https://doi.org/10.1161/STR.0000000000000158

    Qiu, W., Kuang, H., Teleg, E., Ospel, J. M., Sohn, S. I., Almekhlafi, M., Goyal, M., Hill, M. D., Demchuk, A. M., & Menon, B. K. (2020). Machine Learning for Detecting Early Infarction in Acute Stroke with Non-Contrast-enhanced CT. Radiology, 294(3), 638–644. https://doi.org/10.1148/ radiol.2020191193

    Qubiotech. (2021, November 9). Qubiotech. https://qubiotech.com/en/resources/

    Qureshi, A. I., Mendelow, A. D., & Hanley, D. F. (2009). Intracerebral haemorrhage. The Lancet, 373(9675), 1632–1644. https://doi.org/10.1016/S0140-6736(09)60371-8

    Raimbault, A., Cazals, X., Lauvin, M.-A., Destrieux, C., Chapet, S., & Cottier, J.-P. (2014). Radionecrosis of malignant glioma and cerebral metastasis: a diagnostic challenge in MRI. Diagnostic and Interventional Imaging, 95(10), 985–1000. https:// doi.org/10.1016/j.diii.2014.06.013

    Rao, B., Zohrabian, V., Cedeno, P., Saha, A., Pahade, J., & Davis, M. A. (2021). Utility of Artificial Intelligence Tool as a Prospective Radiology Peer Reviewer - Detection of Unreported Intracranial Hemorrhage. Academic Radiology, 28(1), 85–93. https://doi.org/10.1016/j.acra.2020.01.035

    Rava, R. A., Peterson, B. A., Seymour, S. E., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Validation of an artificial intelligence-driven large vessel occlusion detection algorithm for acute ischemic stroke patients. The Neuroradiology Journal, 34(5), 408–417. https://doi.org/10.1177/1971400921998952

    Rava, R. A., Seymour, S. E., LaQue, M. E., Peterson, B. A., Snyder, K. V., Mokin, M., Waqas, M., Hoi, Y., Davies, J. M., Levy, E. I., Siddiqui, A. H., & Ionita, C. N. (2021). Assessment of an Artificial Intelligence Algorithm for Detection of Intracranial Hemorrhage. World Neurosurgery, 150, e209–e217. https://doi. org/10.1016/j.wneu.2021.02.134

    Rezazade Mehrizi, M. H., van Ooijen, P., & Homan, M. (2021). Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. European Radiology, 31(4), 1805–1811. https://doi.org/10.1007/s00330-020-07230-9

    Rizzo, G., Copetti, M., Arcuti, S., Martino, D., Fontana, A., & Logroscino, G. (2016). Accuracy of clinical diagnosis of Parkinson disease: A systematic review and metaanalysis. Neurology, 86(6), 566–576. https://doi.org/10.1212/ WNL.0000000000002350

    Roca, P., Attye, A., Colas, L., Tucholka, A., Rubini, P., Cackowski, S., Ding, J., Budzik, J.-F., Renard, F., Doyle, S., Barbier, E. L., Bousaid, I., Casey, R., Vukusic, S., Lassau, N., Verclytte, S., Cotton, F., OFSEP Investigators, Steering Committee, … Imaging group. (2020). Artificial intelligence to predict clinical disability in patients with multiple sclerosis using FLAIR MRI. Diagnostic and Interventional Imaging, 101(12), 795–802. https://doi.org/10.1016/j.diii.2020.05.009

    Rocca, M. A., Anzalone, N., Storelli, L., Del Poggio, A., Cacciaguerra, L., Manfredi, A. A., Meani, A., & Filippi, M. (2021). Deep Learning on Conventional Magnetic Resonance Imaging Improves the Diagnosis of Multiple Sclerosis Mimics. Investigative Radiology, 56(4), 252–260. https://doi.org/10.1097/ RLI.0000000000000735

    Rotstein, D., & Montalban, X. (2019). Reaching an evidencebased prognosis for personalized treatment of multiple sclerosis. Nature Reviews. Neurology, 15(5), 287–300. https://doi.org/10.1038/s41582-019-0170-8

    Roy, S., Butman, J. A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2018). Multiple Sclerosis Lesion Segmentation from Brain MRI via Fully Convolutional Neural Networks. In arXiv [cs.CV]. arXiv. http://arxiv.org/abs/1803.09172

    Saccà, V., Sarica, A., Novellino, F., Barone, S., Tallarico, T., Filippelli, E., Granata, A., Chiriaco, C., Bruno Bossio, R., Valentino, P., & Quattrone, A. (2019). Evaluation of machine learning algorithms performance for the prediction of early multiple sclerosis from resting-state FMRI connectivity data. Brain Imaging and Behavior, 13(4), 1103–1114. https://doi.org/10.1007/s11682-018-9926-9

    Salvatore, C., Cerasa, A., Battista, P., Gilardi, M. C., Quattrone, A., Castiglioni, I., & Alzheimer’s Disease Neuroimaging Initiative. (2015). Magnetic resonance imaging biomarkers for the early diagnosis of Alzheimer’s disease: a machine learning approach. Frontiers in Neuroscience, 9, 307. https://doi.org/10.3389/fnins.2015.00307

    Salvatore, C., Cerasa, A., Castiglioni, I., Gallivanone, F., Augimeri, A., Lopez, M., Arabia, G., Morelli, M., Gilardi, M. C., & Quattrone, A. (2014). Machine learning on brain MRI data for differential diagnosis of Parkinson’s disease and Progressive Supranuclear Palsy. Journal of Neuroscience Methods, 222, 230–237. https://doi.org/10.1016/j.jneumeth.2013.11.016

    Samarasekera, S., Udupa, J. K., Miki, Y., Wei, L., & Grossman, R. I. (1997). A new computer-assisted method for the quantification of enhancing lesions in multiple sclerosis. Journal of Computer Assisted Tomography, 21(1), 145–151. https://doi.org/10.1097/00004728-199701000-00028

    Schmidt, P., Gaser, C., Arsic, M., Buck, D., Förschler, A., Berthele, A., Hoshi, M., Ilg, R., Schmid, V. J., Zimmer, C., Hemmer, B., & Mühlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774–3783. https://doi.org/10.1016/j.neuroimage.2011.11.032

    Schmitt, N., Mokli, Y., Weyland, C. S., Gerry, S., Herweh, C., Ringleb, P. A., & Nagel, S. (2022). Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. European Radiology, 32(4), 2246–2254. https://doi.org/10.1007/s00330-021-08352-4

    Schröder, J., & Thomalla, G. (2016). A Critical Review of Alberta Stroke Program Early CT Score for Evaluation of Acute Stroke Imaging. Frontiers in Neurology, 7, 245. https://doi.org/10.3389/ fneur.2016.00245

    Schweitzer, A. D., Niogi, S. N., Whitlow, C. T., & Tsiouris, A. J. (2019). Traumatic Brain Injury: Imaging Patterns and Complications. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 39(6), 1571–1595. https://doi.org/10.1148/rg.2019190076

    Seker, F., Pfaff, J., Nagel, S., Vollherbst, D., Gerry, S., Möhlenbruch, M. A., Bendszus, M., & Herweh, C. (2019). CT Reconstruction Levels Affect Automated and Reader- Based ASPECTS Ratings in Acute Ischemic Stroke. Journal of Neuroimaging: Official Journal of the American Society of Neuroimaging, 29(1), 62–64. https://doi.org/10.1111/jon.12562

    Siddique, M. M. R., Yang, D., He, Y., Xu, D., & Myronenko, A. (2022). Automated ischemic stroke lesion segmentation from 3D MRI. In arXiv [eess.IV]. arXiv. http://arxiv.org/abs/2209.09546

    Singh, G., Manjila, S., Sakla, N., True, A., Wardeh, A. H., Beig, N., Vaysberg, A., Matthews, J., Prasanna, P., & Spektor, V. (2021). Radiomics and radiogenomics in gliomas: a contemporary update. British Journal of Cancer, 125(5), 641–657. https://doi.org/10.1038/s41416-021-01387-w

    Skull fractures. (n.d.). Retrieved January 7, 2023, from https:// bestpractice.bmj.com/topics/en-gb/3000207

    Song, T. (2019). Generative Model-Based Ischemic Stroke Lesion Segmentation. In arXiv [eess.IV]. arXiv. http://arxiv.org/ abs/1906.02392

    Spasov, S., Passamonti, L., Duggento, A., Liò, P., Toschi, N., & Alzheimer’s Disease Neuroimaging Initiative. (2019). A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. NeuroImage, 189, 276–287. https://doi.org/10.1016/j. neuroimage.2019.01.031

    Strub, W. M., Leach, J. L., Tomsick, T., & Vagal, A. (2007). Overnight preliminary head CT interpretations provided by residents: locations of misidentified intracranial hemorrhage. AJNR. American Journal of Neuroradiology, 28(9), 1679–1682. https://doi.org/10.3174/ajnr.A0653

    Tang, Y., Xiao, X., Xie, H., Wan, C.-M., Meng, L., Liu, Z.-H., Liao, W.-H., Tang, B.-S., & Guo, J.-F. (2017). Altered Functional Brain Connectomes between Sporadic and Familial Parkinson’s Patients. Frontiers in Neuroanatomy, 11, 99. https://doi.org/10.3389/fnana.2017.00099

    Theocharakis, P., Glotsos, D., Kalatzis, I., Kostopoulos, S., Georgiadis, P., Sifaki, K., Tsakouridou, K., Malamas, M., Delibasis, G., Cavouras, D., & Nikiforidis, G. (2009). Pattern recognition system for the discrimination of multiple sclerosis from cerebral microangiopathy lesions based on texture analysis of magnetic resonance images. Magnetic Resonance Imaging, 27(3), 417–422. https://doi.org/10.1016/j. mri.2008.07.014

    Thomalla, G., Cheng, B., Ebinger, M., Hao, Q., Tourdias, T., Wu, O., Kim, J. S., Breuer, L., Singer, O. C., Warach, S., Christensen, S., Treszl, A., Forkert, N. D., Galinovic, I., Rosenkranz, M., Engelhorn, T., Köhrmann, M., Endres, M., Kang, D. W., … Gerloff, C. (2011). DWI-FLAIR mismatch for the identification of patients with acute ischaemic stroke within 4·5 h of symptom onset (PRE-FLAIR): A multicentre observational study. Lancet Neurology, 10(11), 978–986. https:// doi.org/10.1016/S1474-4422(11)70192-2

    Thomalla, G., Simonsen, C. Z., Boutitie, F., Andersen, G., Berthezene, Y., Cheng, B., Cheripelli, B., Cho, T.-H., Fazekas, F., Fiehler, J., Ford, I., Galinovic, I., Gellissen, S., Golsari, A., Gregori, J., Günther, M., Guibernau, J., Häusler, K. G., Hennerici, M., … Gerloff, C. (2018). MRI-Guided Thrombolysis for Stroke with Unknown Time of Onset. The New England Journal of Medicine, NEJMoa1804355. https://doi.org/10.1056/ NEJMoa1804355

    Thompson, A. J., Banwell, B. L., Barkhof, F., Carroll, W. M., Coetzee, T., Comi, G., Correale, J., Fazekas, F., Filippi, M., Freedman, M. S., Fujihara, K., Galetta, S. L., Hartung, H. P., Kappos, L., Lublin, F. D., Marrie, R. A., Miller, A. E., Miller, D. H., Montalban, X., … Cohen, J. A. (2018). Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology, 17(2), 162–173. https://doi.org/10.1016/S1474- 4422(17)30470-2

    Thust, S. C., van den Bent, M. J., & Smits, M. (2018). Pseudoprogression of brain tumors. Journal of Magnetic Resonance Imaging: JMRI, 48(3), 571–589. https://doi. org/10.1002/jmri.26171

    Tommasin, S., Cocozza, S., Taloni, A., Giannì, C., Petsas, N., Pontillo, G., Petracca, M., Ruggieri, S., De Giglio, L., Pozzilli, C., Brunetti, A., & Pantano, P. (2021). Machine learning classifier to identify clinical and radiological features relevant to disability progression in multiple sclerosis. Journal of Neurology, 268(12), 4834–4845. https://doi.org/10.1007/s00415- 021-10605-7

    Tsai, J. P., & Albers, G. W. (2017). Wake-Up Stroke. Topics in Magnetic Resonance Imaging: TMRI, 1. https://doi.org/10.1097/ RMR.0000000000000126

    Valverde, S., Cabezas, M., Roura, E., González-Villà, S., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Oliver, A., & Lladó, X. (2017). Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach. NeuroImage, 155, 159–168. https://doi.org/10.1016/j.neuroimage.2017.04.034

    Valverde, S., Salem, M., Cabezas, M., Pareto, D., Vilanova, J. C., Ramió-Torrentà, L., Rovira, À., Salvi, J., Oliver, A., & Lladó, X. (2019). One-shot domain adaptation in multiple sclerosis lesion segmentation using convolutional neural networks. NeuroImage. Clinical, 21, 101638. https://doi.org/10.1016/j. nicl.2018.101638

    van Asch, C. J., Luitse, M. J., Rinkel, G. J., van der Tweel, I., Algra, A., & Klijn, C. J. (2010). Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis. Lancet Neurology, 9(2), 167–176. https://doi. org/10.1016/S1474-4422(09)70340-0

    van Leeuwen, K. G., Meijer, F. J. A., Schalekamp, S., Rutten, M. J. C. M., van Dijk, E. J., van Ginneken, B., Govers, T. M., & de Rooij, M. (2021). Cost-effectiveness of artificial intelligence aided vessel occlusion detection in acute stroke: an early health technology assessment. Insights into Imaging, 12(1), 133. https://doi.org/10.1186/s13244-021-01077-4

    van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., & de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 31(6), 3797–3804. https://doi.org/10.1007/s00330-021-07892-z

    Wachinger, C., Reuter, M., & Klein, T. (2018). DeepNAT: Deep convolutional neural network for segmenting neuroanatomy. NeuroImage, 170, 434–445. https://doi.org/10.1016/j. neuroimage.2017.02.035

    Wang, X., Shen, T., Yang, S., Lan, J., Xu, Y., Wang, M., Zhang, J., & Han, X. (2021). A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. NeuroImage. Clinical, 32, 102785. https://doi. org/10.1016/j.nicl.2021.102785

    Wardlaw, J. M., Mair, G., von Kummer, R., Williams, M. C., Li, W., Storkey, A. J., Trucco, E., Liebeskind, D. S., Farrall, A., Bath, P. M., & White, P. (2022). Accuracy of Automated Computer-Aided Diagnosis for Stroke Imaging: A Critical Evaluation of Current Evidence. Stroke; a Journal of Cerebral Circulation, 53(7), 2393–2403. https://doi.org/10.1161/ STROKEAHA.121.036204

    Wattjes, M. P., Rovira, À., Miller, D., Yousry, T. A., Sormani, M. P., de Stefano, M. P., Tintoré, M., Auger, C., Tur, C., Filippi, M., Rocca, M. A., Fazekas, F., Kappos, L., Polman, C., Frederik Barkhof, Xavier Montalban, & MAGNIMS study group. (2015). Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis--establishing disease prognosis and monitoring patients. Nature Reviews. Neurology, 11(10), 597–606. https://doi.org/10.1038/nrneurol.2015.157

    Wildner, P., Stasiołek, M., & Matysiak, M. (2020). Differential diagnosis of multiple sclerosis and other inflammatory CNS diseases. Multiple Sclerosis and Related Disorders, 37, 101452. https://doi.org/10.1016/j.msard.2019.101452

    Wismüller, A., & Stockmaster, L. (2020). A prospective randomized clinical trial for measuring radiology study reporting time on Artificial Intelligence-based detection of intracranial hemorrhage in emergent care head CT. Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, 11317, 144–150. https://doi. org/10.1117/12.2552400

    Wong, K. K., Cummock, J. S., Li, G., Ghosh, R., Xu, P., Volpi, J. J., & Wong, S. T. C. (2022). Automatic Segmentation in Acute Ischemic Stroke: Prognostic Significance of Topological Stroke Volumes on Stroke Outcome. Stroke; a Journal of Cerebral Circulation, 101161STROKEAHA121037982. https://doi. org/10.1161/STROKEAHA.121.037982

    World Stroke Organisation (2022) Global Stroke Fact Sheet. Retrieved December 2022 from https://www.world-stroke.org/ assets/downloads/WSO_Global_Stroke_Fact_Sheet.pdf

    Wottschel, V., Alexander, D. C., Kwok, P. P., Chard, D. T., Stromillo, M. L., De Stefano, N., Thompson, A. J., Miller, D. H., & Ciccarelli, O. (2015). Predicting outcome in clinically isolated syndrome using machine learning. NeuroImage. Clinical, 7, 281–287. https://doi.org/10.1016/j.nicl.2014.11.021

    Wottschel, V., Chard, D. T., Enzinger, C., Filippi, M., Frederiksen, J. L., Gasperini, C., Giorgio, A., Rocca, M. A., Rovira, A., De Stefano, N., Tintoré, M., Alexander, D. C., Barkhof, F., Ciccarelli, O., & MAGNIMS study group and the EuroPOND consortium. (2019). SVM recursive feature elimination analyses of structural brain MRI predicts nearterm relapses in patients with clinically isolated syndromes suggestive of multiple sclerosis. NeuroImage. Clinical, 24, 102011. https://doi.org/10.1016/j.nicl.2019.102011

    Yahav-Dovrat, A., Saban, M., Merhav, G., Lankri, I., Abergel, E., Eran, A., Tanne, D., Nogueira, R. G., & Sivan-Hoffmann, R. (2021). Evaluation of Artificial Intelligence-Powered Identification of Large-Vessel Occlusions in a Comprehensive Stroke Center. AJNR. American Journal of Neuroradiology, 42(2), 247–254. https://doi.org/10.3174/ajnr.A6923

    Ye, H., Gao, F., Yin, Y., Guo, D., Zhao, P., Lu, Y., Wang, X., Bai, J., Cao, K., Song, Q., Zhang, H., Chen, W., Guo, X., & Xia, J. (2019). Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology, 29(11), 6191–6201. https:// doi.org/10.1007/s00330-019-06163-2

    Yoo, Y., Tang, L. Y. W., Brosch, T., Li, D. K. B., Kolind, S., Vavasour, I., Rauscher, A., MacKay, A. L., Traboulsee, A., & Tam, R. C. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage. Clinical, 17, 169–178. https://doi.org/10.1016/j. nicl.2017.10.015

    Zaki, L. A. M., Vernooij, M. W., Smits, M., Tolman, C., Papma, J. M., Visser, J. J., & Steketee, R. M. E. (2022). Comparing two artificial intelligence software packages for normative brain volumetry in memory clinic imaging. Neuroradiology, 64(7), 1359–1366. https://doi.org/10.1007/s00234-022-02898-w

    Zhang, Q., Cao, J., Zhang, J., Bu, J., Yu, Y., Tan, Y., Feng, Q., & Huang, M. (2019). Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. Computational and Mathematical Methods in Medicine, 2019, 2893043. https://doi. org/10.1155/2019/2893043

    Zhang, S., Nguyen, T. D., Zhao, Y., Gauthier, S. A., Wang, Y., & Gupta, A. (2018). Diagnostic accuracy of semiautomatic lesion detection plus quantitative susceptibility mapping in the identification of new and enhancing multiple sclerosis lesions. NeuroImage. Clinical, 18, 143–148. https://doi.org/10.1016/j. nicl.2018.01.013

    Zhang, Y.-Q., Liu, A.-F., Man, F.-Y., Zhang, Y.-Y., Li, C., Liu, Y.-E., Zhou, J., Zhang, A.-P., Zhang, Y.-D., Lv, J., & Jiang, W.-J. (2022). MRI radiomic features-based machine learning approach to classify ischemic stroke onset time. Journal of Neurology, 269(1), 350–360. https://doi.org/10.1007/s00415-021-10638-y

    Zhao, Y., Healy, B. C., Rotstein, D., Guttmann, C. R. G., Bakshi, R., Weiner, H. L., Brodley, C. E., & Chitnis, T. (2017). Exploration of machine learning techniques in predicting multiple sclerosis disease course. PloS One, 12(4), e0174866. https://doi.org/10.1371/journal.pone.0174866

    Zhao, Y., Wang, T., Bove, R., Cree, B., Henry, R., Lokhande, H., Polgar-Turcsanyi, M., Anderson, M., Bakshi, R., Weiner, H. L., Chitnis, T., & SUMMIT Investigators. (2020). Ensemble learning predicts multiple sclerosis disease course in the SUMMIT study. NPJ Digital Medicine, 3, 135. https://doi. org/10.1038/s41746-020-00338-8

    Zhu, H., Jiang, L., Zhang, H., Luo, L., Chen, Y., & Chen, Y. (2021). An automatic machine learning approach for ischemic stroke onset time identification based on DWI and FLAIR imaging. NeuroImage. Clinical, 31, 102744. https://doi.org/10.1016/j. nicl.2021.102744

    Zurita, M., Montalba, C., Labbé, T., Cruz, J. P., Dalboni da Rocha, J., Tejos, C., Ciampi, E., Cárcamo, C., Sitaram, R., & Uribe, S. (2018). Characterization of relapsing-remitting multiple sclerosis patients using support vector machine classifications of functional and diffusion MRI data. NeuroImage. Clinical, 20, 724–730. https://doi.org/10.1016/j. nicl.2018.09.002

     

    FREE EBOOK

    Artificial Intelligence   
    Imaging Applications  
    in Neuroradiology

    Download the ebook
    Artificial Intelligence Imaging Applications In Neuroradiology