Explore Your Local Site

Looks like you've landed on our   site. Let's take you home:    

Please note that the content and products on the    site might not be available in your region.

 

Choose the language:

  Homepage
Continue on the current website:  

 

La inteligencia artificial en el diagnóstico por la imagen: ¿Qué, cómo y por qué?

La inteligencia artificial (IA) es un campo que permite a los sistemas informáticos resolver problemas adaptándose a circunstancias cambiantes, a menudo imitando el razonamiento y el criterio humanos. Diversas tendencias demográficas y sanitarias están impulsando el uso de la IA en el análisis de las imágenes médicas. La cantidad de datos de imágenes médicas que se adquieren aumenta de forma constante (Larson et al., 2011; Smith-Bindman et al., 2008, 2012; Winder et al., 2021). Asimismo, también existe una escasez generalizada de trabajadores sanitarios ( Core Health Indicators in the WHO European Region 2015. Special Focus: Human Resources for Health, 2017) que deben asumir una carga de trabajo cada vez mayor (Levin et al., 2017), y se prevé que el número de exploraciones por imagen aumente de forma exponencial durante las próximas dos décadas (Tsao, 2020). La oferta de radiólogos y técnicos de radiología es especialmente escasa (AAMC Report Reinforces Mounting Physician Shortage, 2021, Clinical Radiology UK Workforce Census 2019 Report, 2019). Por último, se prevé que el envejecimiento de la población mundial (Population Ages 65 and above,s.f.; OMS, s.f.-a) y el aumento de la carga mundial de enfermedades crónicas (OMS, s.f.-b) agraven estos problemas en un futuro próximo.

En términos generales, las ventajas que ofrece la IA en el diagnóstico por la imagen podrían incluir la capacidad de proporcionar información que de otro modo no sería posible con los métodos tradicionales (como la exploración de dichas imágenes por parte de personal médico) y de hacerlo de una forma más rápida y automatizada (sin necesidad de interacción humana). Las soluciones para el análisis de imágenes médicas basadas en inteligencia artificial podrían mejorar y acelerar la detección de enfermedades, evaluar en profundidad los riesgos del desarrollo y la progresión de la enfermedad y reducir la subjetividad en la interpretación de los datos.

El estado actual de la IA en el análisis de las imágenes médicas

En los últimos años, el uso de la IA en el diagnóstico por la imagen ha cambiado drásticamente. Han surgido un gran número de aplicaciones prometedoras, el campo ha experimentado un aumento de financiación sin precedentes y hemos observado tendencias positivas en la adopción de soluciones de IA por parte de los radiólogos, así como en su aprobación por parte de los organismos reguladores.

Aplicaciones

Si bien las unidades de radiología prestan una gran cantidad de servicios, el servicio básico que ofrecen es el estudio por imagen. Las aplicaciones de la IA en el análisis de imágenes pueden clasificarse en las que se aplican antes, durante o después del estudio de imagen.

Antes de la adquisición de imágenes

En el contexto del flujo de trabajo de una unidad de radiología, antes de someter a un paciente a un estudio por imagen deben seguirse varios pasos. Las aplicaciones de IA que pretenden mejorar estos pasos se denominan «IA ascendente» y podrían aumentar la eficiencia y hacer posible una toma de decisiones más personalizada en las unidades de radiología.

Así, por ejemplo, es bien sabido que hay pacientes que no acuden a sus citas médicas. Estas citas médicas perdidas reducen la eficiencia de los hospitales y desperdician recursos (Dantas et al., 2018). Estudios realizados en Japón (Kurasawa et al., 2016) y el Reino Unido (Nelson et al., 2019) han demostrado que la IA se puede utilizar para predecir las ausencias con gran precisión. Esto permite utilizar estrategias específicas para reducir la probabilidad de que un paciente falte a su cita, incluido el envío de recordatorios automáticos.

Una de las decisiones más importantes que se toman en las unidades de radiología es el protocolo exacto de exploración que se utilizará con un paciente determinado. Si bien esto se aplica a todas las modalidades de diagnóstico por la imagen, el mayor abanico de opciones se da en la resonancia magnética (RM), que incluye la elección del conjunto adecuado de secuencias y la toma de decisiones sobre la administración o no de medios de contraste intravenosos. Con este fin, se han utilizado, por ejemplo, clasificadores de lenguaje natural que interpretan el texto narrativo de las solicitudes de exploración del médico para seleccionar los protocolos de RM adecuados. En un estudio, un clasificador de aumento de gradiente predijo, con una elevada precisión (95 %), el protocolo de RM cerebral adecuado a utilizar en función de la solicitud de la exploración (Brown y Marotta, 2018). En el caso de la RM musculoesquelética, un clasificador de aprendizaje profundo ofreció una precisión del 83 % a la hora de determinar la necesidad de administrar un medio de contraste (Trivedi et al., 2018). Estas aplicaciones pueden mejorar de forma significativa la eficiencia, ya que evitan que los radiólogos tengan que dedicar una gran cantidad de tiempo a revisar solicitudes de exploración no estructuradas de los médicos que las solicitan.

Durante la adquisición de imágenes

Recientemente se han introducido mejoras sustanciales en el uso de la IA para mejorar la calidad de las imágenes. En una encuesta reciente, los radiólogos identificaron la mejora de la calidad de la imagen como el caso de uso actual más generalizado de la IA en las técnicas por imagen (Alexander et al., 2020). Si bien los intentos anteriores de reducir el ruido de la imagen utilizando técnicas de aprendizaje profundo fueron criticados por eliminar detalles de las imágenes que ponían en peligro la visibilidad de características esenciales dentro de las imágenes, las implementaciones más recientes han dejado este problema en gran medida obsoleto.

potencial de la ia

 

En particular, las técnicas de aprendizaje profundo, como las redes generativas antagónicas, han demostrado un gran potencial en la eliminación de ruido de imágenes (Wang et al., 2021). Algunas de estas aplicaciones se centran en la etapa de reconstrucción de la imagen (en la que los datos brutos del sensor se convierten en una imagen interpretable), proporcionando relaciones señal-ruido superiores y reduciendo los artefactos de la imagen (Zhu et al., 2018). En la detección sistemática del cáncer de pulmón, la eliminación de ruido de imágenes basada en el aprendizaje profundo mejoró tanto la calidad de la imagen como la precisión diagnóstica de la tomografía computarizada (TC) de dosis ultrabaja para detectar nódulos pulmonares sospechosos (Hata et al., 2020; Kerpel et al., 2021). Las exploraciones que se adquirieron entre un 40 % y un 60 % más rápidamente que las exploraciones estándar y se mejoraron con algoritmos basados en aprendizaje profundo ofrecieron una mejor calidad de imagen y un valor diagnóstico similar a las exploraciones estándar del cerebro (Bash, Wang, et al., 2021; Rudie et al., 2022) y la columna vertebral (Bash, Johnson, et al., 2021). Del mismo modo, las redes neuronales convolucionales pueden utilizarse para reducir artefactos específicos de TC y RM y mejorar la resolución espacial (Hauptmann et al., 2019; K. H. Kim & Park, 2017; Park et al., 2018; Y. Zhang & Yu, 2018).

Los algoritmos de reconstrucción basados en el aprendizaje profundo han permitido adquirir tomografías computarizadas de dosis ultrabaja manteniendo la calidad diagnóstica. Esto resulta especialmente beneficioso en niños y mujeres embarazadas, situaciones en las que es fundamental reducir la dosis de radiación al mínimo posible. Estos enfoques de reconstrucción de imágenes de TC basados en el aprendizaje profundo se asocian a un menor ruido de imagen y una mejor textura de la imagen que las alternativas de vanguardia como la reconstrucción iterativa (Higaki et al., 2020; McLeavy et al., 2021; Singh et al., 2020). En la tomografía por emisión de positrones, el aprendizaje profundo puede reducir la dosis de trazador inyectado en un tercio y los tiempos de exploración hasta la mitad, manteniendo la calidad de la exploración (Katsari et al., 2021; Le et al., 2020; Xu et al., 2020).

Después de la adquisición de imágenes

Los técnicos de radiología y los radiólogos suelen compartir la tarea de volver a llamar a los pacientes para repetir las exploraciones, si bien hacerlo de una forma coherente y fiable es sumamente difícil debido a la falta de tiempo. Se ha demostrado que la calidad de la imagen de las RM cerebrales mejoradas con IA es igual o superior que la de las exploraciones convencionales, incluso cuando se utilizan protocolos de adquisición que reducen los tiempos de exploración entre un 45 % y un 60 % (Schreiber-Zinaman & Rosenkrantz, 2017).

Con frecuencia, la priorización de la lectura de la exploración en la lista de trabajo de un radiólogo se basa en varios factores, incluido el tipo de exploración, la unidad que la solicita y la comunicación directa con el radiólogo sobre la urgencia de la misma. Se han explorado diversos enfoques para influir en el orden de lectura de las exploraciones, con el objetivo de mejorar la eficacia y asegurar que las exploraciones más importantes se presenten primero. Estos incluyen asignar a diferentes radiólogos exámenes específicos en función de la rapidez con la que leen ciertos tipos de exploraciones (Wong et al., 2019), detectar automáticamente hallazgos emergentes en las imágenes y situar estos casos en la «parte superior de la lista» (Prevedello et al., 2017; Winkel et al., 2019).

Alrededor del 70 % de todas las soluciones basadas en IA en radiología se centran en la «percepción», una categoría de funcionalidades que incluye la segmentación, la extracción de características, y la detección y clasificación de patologías (Rezazade Mehrizi et al., 2021). Dentro de esta categoría, la mayoría de las herramientas extraen información de los datos de imagen, ya sea con o sin cuantificación, y además alertan al usuario sobre posibles patologías. (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). En los últimos años, algunas de las aplicaciones más prometedoras de esta categoría han sido la detección de la oclusión de vasos cerebrales, hemorragias cerebrales, nódulos pulmonares, neumotórax y derrames pleurales, fracturas y la caracterización de lesiones mamarias.

Financiación

El importe total de la inversión en empresas de imagen médica basadas en IA ascendió a 1170 millones de dólares entre 2014 y 2019 (Alexander et al., 2020). En este mismo período, el número de empresas en este espacio se triplicó, lo que provocó una caída de casi el 30 % en la inversión mediana en cada empresa (Alexander et al., 2020). Entre los años 2019 y 2020, la inversión privada en empresas de IA aumentó un 9,3 % (D. Zhang et al., 2021). Para el año 2030, se prevé que la inversión en soluciones basadas en inteligencia artificial (IA) para imágenes médicas supere los 3 mil millones de dólares (Tsao, 2020).

Adopción

En los últimos años se han observado tendencias positivas en la adopción de herramientas de IA por parte de radiólogos y técnicos de radiología. Entre 2015 y 2020, el uso de IA en las unidades de radiología aumentó un 30 %, según una encuesta realizada por el Colegio Estadounidense de Radiología (ACR), en la que participaron 1861 radiólogos (Allen et al., 2021).

A pesar de esta prometedora tendencia, se considera que la adopción de herramientas de IA es desproporcionadamente baja en relación con la financiación, el número de empresas y la promesa que se asocia a estas herramientas. La encuesta del ACR permite comprender por qué y ofrece un punto de partida para desarrollar estrategias que mejoren la adopción de la IA. Casi tres cuartas partes de los radiólogos que no utilizaban IA no tenían previsto hacerlo en el futuro porque, o bien no estaban convencidos de sus beneficios, o bien no creían que los costes asociados a la misma estuvieran justificados (Allen et al., 2021). Asimismo, se han observado resultados similares en otros estudios, en los que los radiólogos citan el escepticismo en las capacidades de las herramientas de IA y el hecho de que relativamente pocas cuentan con una aprobación reglamentaria, como motivos para no adoptarla en la práctica clínica (Alexander et al., 2020).

Un éxito regulatorio

Hasta agosto de 2019, el 60 % de las soluciones radiológicas basadas en IA disponibles no contaban con una aprobación regulatoria (Rezazade Mehrizi et al., 2021). En abril de 2020, un total de 100 soluciones de IA contaban con la marca CE, un requisito previo para que puedan comercializarse como productos sanitarios en Europa (van Leeuwen et al., 2021). En el momento de escribir este artículo, más de 150 soluciones de IA han obtenido la aprobación de la FDA (AI Central, s.f.). En la actualidad existen varias bases de datos útiles de soluciones basadas en IA aprobadas o autorizadas para la atención sanitaria médica (AI Central, s.f., AI for Radiology, s.f., Medical AI Assessment, s.f., The Medical Futurist, s.f.).

El futuro de la IA en las técnicas por imagen

En los últimos años se ha producido un crecimiento exponencial del interés por la IA en el diagnóstico médico por imagen, tanto en lo que se refiere al volumen de investigación como a la cantidad de dinero que se invierte en este campo. Este interés abarca todo el espectro del flujo de trabajo en radiología, si bien, hasta ahora, las aplicaciones de «percepción» (como la cuantificación de biomarcadores y la detección de procesos patológicos) han sido las más dominantes. En la comunidad radiológica, las tendencias han pasado de percibir la IA como un intruso indeseado a adoptarla cada vez más, aunque con cierto escepticismo y dudas sobre su valor. Las primeras soluciones de IA utilizadas en las técnicas por imagen han recibido la aprobación reglamentaria, y hemos visto los primeros indicios de cómo pueden reembolsarse estas soluciones.

Nuevas direcciones

A medida que se reconoce cada vez más que una gran proporción del potencial de la IA en el diagnóstico médico por imagen puede residir en aplicaciones «previas» o «no interpretativas», es probable que su campo de acción se amplíe en los próximos años. Esto incluirá una mayor investigación sobre aplicaciones que mejoren la eficiencia de los flujos de trabajo de radiología y ofrezcan una atención al paciente más personalizada (Alexander et al., 2020). En este sentido, es probable que la IA se utilice en mayor medida en una fase más temprana del proceso de tratamiento del paciente, es decir, antes de que el médico decida que es necesario realizar una prueba de diagnóstico por la imagen. Estas aplicaciones, fundamentalmente sistemas de apoyo a la toma de decisiones clínicas, han demostrado su eficacia en la toma de decisiones sobre tratamientos en diversos contextos (Bennett & Hauser, 2013; Komorowski et al., 2018), y se han utilizado con éxito en la toma de decisiones sobre tratamientos (Bennett & Hauser, 2013). En el futuro, las soluciones de IA pueden llamar la atención de los médicos sobre la necesidad de llevar a cabo un mayor número de pruebas por imagen basándose en la revisión de la información clínica del paciente, las pruebas analíticas y las pruebas de imagen previas (Makeeva et al., 2019).

 

percepcion

La gran mayoría (77 %-84 %) de las soluciones de IA disponibles actualmente en el ámbito del diagnóstico por la imagen se centran en la TC, la RM y las radiografías simples (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). Las técnicas de imagen nuclear, como la tomografía por emisión de positrones (PET), proporcionan información única que no es posible obtener fácilmente con otras modalidades. Hasta ahora, la investigación en IA ha prestado escasa atención a la PET (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021), por lo que es una vía de expansión potencialmente prometedora.

También se espera que la investigación en IA experimente un cambio en el tipo de datos que se utilizan. El paciente hospitalizado típico se somete a más de un estudio por imagen distinto durante su estancia hospitalaria (Shinagare et al., 2014). A pesar de ello, solo alrededor del 3 % de las soluciones radiológicas actuales basadas en IA combinan datos de múltiples modalidades (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). La combinación de datos de múltiples fuentes de imágenes puede mejorar las capacidades de diagnóstico de las soluciones de IA. Además, es probable que las futuras soluciones de IA en radiología combinen información de imágenes, información clínica y pruebas diagnósticas no relacionadas con el diagnóstico por la imagen (Huang et al., 2020). De este modo, las soluciones de IA podrán identificar patrones en los datos recopilados durante la estancia de un paciente en el hospital que no sean fácilmente identificables por el personal sanitario (Rockenbach, 2021). En última instancia, esto podría dar lugar a unos diagnósticos más precisos y contribuir a tomar mejores decisiones terapéuticas más personalizadas.

También es probable que las expectativas para las soluciones del diagnóstico por la imagen basadas en la IA cambien respecto al enfoque actual de triaje, mejora de la imagen y automatización. Con el aumento de la complejidad algorítmica, la disponibilidad de datos y la experiencia con estas herramientas, este cambio puede conllevar a que las soluciones de IA permitan obtener diagnósticos específicos y recomienden pasos específicos en el plan de tratamiento de un paciente. Del mismo modo que la introducción de las primeras herramientas de IA para el cribado y procesamiento de imágenes en torno a 2018 estimuló la inversión en este campo, los análisis de marketing predicen un aumento similar de la inversión en los próximos años, a medida que se generalicen las herramientas de IA que proporcionan diagnósticos y pasos de gestión específicos (Michoud et al., 2019).

Una crítica importante al panorama actual de la IA en el diagnóstico por la imagen, posiblemente aún incipiente, es que está demasiado fragmentada. Sin duda, los profesionales de radiología apreciarían una integración más eficiente de las soluciones de inteligencia artificial en su rutina diaria. Esto incluye la integración perfecta de estas soluciones en los flujos de trabajo de radiología establecidos, con el mayor número posible de procesos «en segundo plano», sin intervención del usuario. Además, los resultados de estas soluciones podrían integrarse en los sistemas de información radiológica disponibles. En consecuencia, el campo podría pasar de la gran cantidad de soluciones de IA de nicho disponibles actualmente, cada una dirigida a una única aplicación muy específica, a paquetes de software más amplios que abarquen diversas funciones para una modalidad de imagen o una región corporal determinada.

La fragmentación de la inversión en el mercado de la IA en el diagnóstico por la imagen (Alexander et al., 2020) fomenta la innovación, lo que permite a muchos actores probar diferentes estrategias en este campo emergente. Sin embargo, a largo plazo, la consolidación puede aumentar la adopción y estimular el tipo de integración perfecta que se necesita en los flujos de trabajo existentes, permitiendo a menos empresas ofrecer estas soluciones a escala (Alexander et al., 2020).

Desafíos

Calidad y presentación de los datos

En una revisión de 100 soluciones de IA con marcado CE, el 64 % de ellas carecían de pruebas científicas con revisión científica externa sobre su eficacia (van Leeuwen et al., 2021). En los casos en los que se disponía de pruebas científicas, su nivel era bajo, y rara vez superaba la demostración de exactitud diagnóstica (van Leeuwen et al., 2021). Otra revisión sistemática de la evidencia de algoritmos de aprendizaje profundo en imágenes halló que la precisión diagnóstica era, por lo general, elevada, si bien se observó un alto riesgo de sesgo entre los estudios (Aggarwal et al., 2021). Las principales fuentes de sesgo son la falta de validación externa (D. W. Kim y otros, 2019; Liu et al., 2019), informes con resultados insuficientemente detallados (Liu et al., 2019), un diseño de estudio retrospectivo (Nagendran et al., 2020) y la inaccesibilidad de los datos y el código por parte los revisores y lectores (Nagendran et al., 2020).

En general, los estudios sobre herramientas de IA han mostrado una preocupante falta de informes estandarizados y de adhesión a las directrices de información recomendadas (Aggarwal et al., 2021; Yusuf et al., 2020). A pesar de que actualmente existen diversas ampliaciones de las directrices de notificación establecidas, así como directrices específicas para la IA (Shelmerdine et al., 2021). La aplicación generalizada de estas directrices debería ser uno de los objetivos de los desarrolladores de IA en el futuro.

Los desarrolladores de IA también deben ser conscientes de que es probable que el nivel de datos actualmente «aceptables» para las soluciones basadas en IA se quede obsoleto en un futuro próximo. Es probable que tanto los reguladores como los posibles usuarios exijan unos niveles de datos más sólidos para estas soluciones, similares a los requeridos para los nuevos fármacos. En los próximos años, veremos cómo se prueban más de estas soluciones de IA en ensayos clínicos aleatorizados. En un futuro más lejano, es plausible que tales expectativas vayan más allá de aportar pruebas de la seguridad, eficacia o rendimiento diagnóstico de estas soluciones, para llegar a demostrar que también aportan un valor monetario o social añadido.

Afrontar el reto de mejorar la calidad y la presentación de pruebas para las soluciones basadas en IA puede resultar rentable a largo plazo. Lo que podría reducir el riesgo de sesgo en los estudios de IA, permitir una evaluación exhaustiva y transparente de la calidad de los estudios por parte de los usuarios potenciales y los organismos reguladores, y facilitar las revisiones sistemáticas y los metanálisis. Estas acciones pueden fortalecer la confianza en las soluciones basadas en la inteligencia artificial y fomentar su adopción, a la vez que se garantiza que ofrezcan mejoras realistas y sostenibles en la vida de las personas.

Regulación

Existen varios aspectos inherentes a la IA que presentan retos en cuanto a los intentos de regularla como otras intervenciones sanitarias. El funcionamiento interno de las soluciones de IA suele ser opaco y difícil de describir de forma exhaustiva, tal como esperan tradicionalmente los organismos reguladores.

Sin embargo, los últimos años nos han demostrado que estos desafíos regulatorios están lejos de ser irresolubles. Tanto la Administración de Alimentos y Medicamentos de los EE. UU. como la Comisión Europea han propuesto recientemente marcos regulatorios iniciales para las soluciones de IA (Center for Devices & Radiological Health, 2021; European Commission, 2021).

En parte, como respuesta a la transparencia necesaria para la aprobación regulatoria, los investigadores han logrado avances significativos para hacer que la toma de decisiones de la IA sea más comprensible y explicable. Este movimiento hacia una «IA interpretable» cobrará un mayor impulso en un futuro próximo, a medida que aumente la dependencia de la IA para la toma de decisiones clínicas en la vida real.

Ello ofrece múltiples ventajas, como, por ejemplo, facilitar la aprobación regulatoria, aumentar la confianza de los usuarios en estas soluciones, reducir los sesgos y mejorar la reproducibilidad de estas soluciones (Holzinger et al., 2017; Kolyshkina & Simoff, 2021; “Towards Trustable Machine Learning”, 2018; Yoon et al., 2021).

Privacidad de los datos

Desde el desarrollo y las pruebas hasta la implantación, las soluciones de IA en el diagnóstico por la imagen requieren acceder a los datos de los pacientes. Esto ha generado preocupación en relación a la privacidad de los datos, una problemática polifacética y sumamente compleja (Murdoch, 2021), que ocupa un lugar destacado en las estrategias regulatorias de diversos países (COCIR, Comité Europeo de Coordinación de la Industria Radiológica, Electromédica y de las Tecnologías de la Información Sanitaria, 2020). Las soluciones sugeridas a este respecto van desde las centradas en la supervisión hasta enfoques más técnicos.

Los pacientes que faciliten los datos tienen que ser conscientes de que lo están haciendo, así como ser informados de por qué y cómo se utilizarán sus datos (Lotan et al., 2020), tal y como se estipula explícitamente en el Reglamento General de Protección de Datos de la UE (Reglamento General de Protección de Datos [RGPD]– Texto Legal Oficial, 2016). Teniendo en cuenta la rapidez con la que se desarrollan las soluciones de IA, se ha cuestionado si es posible mantener a los pacientes suficientemente informados a medida que estos algoritmos se actualizan (Kritikos, 2020). Aunque los datos totalmente anonimizados no están sujetos a requisitos tan estrictos en virtud del RGPD (¿Qué son los datos personales?, 2021), la anonimización es sumamente difícil de lograr en los datos de imágenes médicas.

La privacidad de los datos deberá abordarse desde varios frentes. Además de la legislación que regula el uso de los datos de los pacientes, cada vez está más claro que todas las partes implicadas en el desarrollo y el uso de soluciones de IA -desarrolladores, seguros médicos, organismos reguladores, investigadores y radiólogos- tienen un papel que desempeñar para garantizar que los datos estén protegidos y se utilicen de forma responsable.

Asimismo, es probable que en los próximos años se sigan investigando enfoques técnicos para reforzar la protección de datos. Entre ellos, se incluyen la mejora de los métodos para reducir las posibilidades de que se pueda rastrear a la persona a partir de sus datos, métodos para mantener los datos sensibles almacenados a nivel local, incluso cuando el algoritmo que se está entrenando se aloja en alguna ubicación «central», la alteración de los datos para minimizar la información dentro de un conjunto de datos dado que pertenezca a pacientes individuales, y el cifrado de datos (G. Kaissis et al., 2021; G. A. Kaissis et al., 2020).

regulacion

 

Democratización

A fin de que el uso de la IA en el diagnóstico por la imagen logre alcanzar todo su potencial, los algoritmos que se están desarrollando deben poder ser utilizados por todo el mundo. Esta «democratización» de la IA implica garantizar que los profesionales sanitarios dispongan de los conocimientos y habilidades necesarios para utilizar soluciones basadas en la IA. Salvo algunas excepciones (Paranjape et al., 2019), actualmente, los planes de estudio de los estudiantes de medicina incluyen poca o ninguna formación específica sobre IA (Banerjee et al., 2021; Blease et al., 2022). Encuestas llevadas a cabo en todo el mundo han demostrado que la exposición de los estudiantes de medicina y los médicos (Ahmed et al., 2022; Bisdas et al., 2021; Collado-Mesa et al., 2018; Kansal et al., 2022; Pinto Dos Santos et al., 2019; Sit et al., 2020) a la IA durante la formación fue baja, a pesar de la gran demanda de acceder a contenidos formativos sobre esta temática (Kansal et al., 2022; Ooi et al., 2021; Sit et al., 2020). Además, sigue habiendo grandes diferencias entre géneros y países en cuanto a los conocimientos percibidos sobre la IA entre los estudiantes de medicina (Bisdas et al., 2021). Son muchas las razones que dan lugar a estas diferencias, y muchos los desafíos asociados a la integración generalizada de la educación en IA en los planes de estudios de los profesionales sanitarios. En los próximos años, habrá que investigar estrategias para abordar estos problemas y garantizar que los futuros profesionales sanitarios dispongan de los conocimientos y habilidades que necesitan para trabajar en un entorno en el que la IA desempeña un papel cada vez más importante.

La democratización también implica garantizar que pacientes de distintos géneros, estilos de vida, etnias y ubicaciones geográficas puedan beneficiarse de las soluciones basadas en la IA. Para que esto suceda, estas soluciones deben ser accesibles y su rendimiento generalizable. Esto último requiere la adquisición de datos diversos de múltiples instituciones, preferiblemente de múltiples países, para entrenar soluciones basadas en IA. Asimismo, además de la legislación que regula el uso de los datos de los pacientes, también es crucial implementar medidas preventivas para asegurar que las fuentes de sesgo a lo largo del proceso de desarrollo no se propaguen al algoritmo entrenado (Vokinger et al., 2021), una cuestión que solo recientemente ha pasado a primer plano (Larrazabal et al., 2020; Obermeyer et al., 2019; Seyyed-Kalantari et al., 2021).

Reembolso

A medida que las políticas de los países para regular la IA en la atención sanitaria empiezan a tomar forma, un aspecto importante que requiere atención es quién pagará estas soluciones de IA, y según qué marco.

Muchos consideran que la Ley de Suministro Digital de 2020 de Alemania es un paso en la dirección correcta para el reembolso de las soluciones de salud digitales. Según esta política, las aplicaciones digitales prescritas por los médicos son reembolsables por los seguros médicos obligatorios si se demuestra que son seguras, cumplen las leyes de protección de datos y mejoran la atención al paciente. El Reino Unido, por su parte, ha publicado una guía para posibles compradores de soluciones basadas en IA, que sirve de punto de partida para que las empresas se preparen para solicitar el reembolso (A Buyer's Guide to AI in Health and Care, 2020).

Hasta ahora, los casos de éxito en el reembolso en el ámbito de la sanidad digital han sido escasos (Brinkmann- Sass et al., 2020; Hassan, 2021). Esto se debe en parte a que los requisitos varían mucho de un país a otro (COCIR, Comité Europeo de Coordinación de la Industria Radiológica, Electromédica y de las Tecnologías de la Información Sanitaria, 2020). En general, los proveedores de soluciones sanitarias digitales deberán presentar evidencias del valor global que ofrecen estas soluciones, incluyendo estudios detallados de economía sanitaria que demuestren el posible ahorro de costes.

La posición de la Unidad de Radiología como proveedor de servicios para múltiples unidades hospitalarias implica que se espera que las soluciones basadas en IA en este ámbito tengan un impacto significativo (van Duffelen, 2021). Las empresas deberán demostrar su valor tanto a corto plazo (mediante mejoras en la velocidad de lectura e informes de imágenes) como a largo plazo (mediante diagnósticos y tratamientos tempranos, prevención de enfermedades y reducción de seguimientos innecesarios). En los próximos años, las empresas competirán por demostrar su impacto, experimentando con distintos modelos de precios y sorteando el cambiante panorama burocrático de los reembolsos.

Conclusión

En los últimos años, el campo de la IA en el diagnóstico por la imagen ha experimentado una transformación rápida pero constante. En la actualidad, la IA en radiología puede lograr cosas que pocos creían posibles hace apenas una década. Este campo también está superando gradualmente uno de los obstáculos más importantes: la aprobación regulatoria. Además, si bien hace unos años el miedo y el escepticismo dominaban la percepción de los radiólogos sobre el futuro de la IA en su especialidad, ya no es así.

Se espera que el enorme progreso y el interés en el campo de la IA en el diagnóstico por la imagen se mantenga a lo largo de 2022, y más allá. En los próximos años, este campo experimentará transformaciones apasionantes. Es probable que amplíe su ámbito de acción para mejorar la eficiencia del flujo de trabajo radiológico, incluir modalidades de imagen hasta ahora desatendidas, combinar datos de múltiples modalidades y ofrecer predicciones diagnósticas y recomendaciones más específicas sobre los tratamientos. Se incorporarán paquetes de software completos y fáciles de usar que utilizan IA en los flujos de trabajo de radiología existentes, lo que hará que el trabajo de los radiólogos y radiógrafos sea más fácil y eficiente.

Como en cualquier campo de rápido crecimiento, el uso de la IA en el diagnóstico por la imagen debe hacer frente a varios desafíos científicos, regulatorios y económicos. Sin embargo, los últimos años nos han demostrado que incluso los problemas más difíciles pueden resolverse. Los desarrolladores y usuarios de soluciones basadas en IA deben ser conscientes de estas cuestiones para poder adaptar sus estrategias a las expectativas cambiantes a nivel regulatorio y social. Ello les permitirá prosperar en un campo fascinante, con el potencial de mejorar prácticamente todos los aspectos de la atención médica.

Referencias bibliográficas 

AAMC Report Reinforces Mounting Physician Shortage. (2021). AAMC. https://www.aamc.org/news-insights/press- releases/aamc-report-reinforces-mounting-physician-shortage

A buyer’s guide to AI in health and care. (2020). NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ explore-all-resources/adopt-ai/a-buyers-guide-to-ai-in-health- and-care/

Aggarwal, R., Sounderajah, V., Martin, G., Ting, D. S. W., Karthikesalingam, A., King, D., Ashrafian, H., & Darzi, A. (2021). Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digital Medicine, 4(1), 65.

Ahmed, Z., Bhinder, K. K., Tariq, A., Tahir, M. J., Mehmood, Q., Tabassum, M. S., Malik, M., Aslam, S., Asghar, M. S., & Yousaf, Z. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Pakistan: A cross-sectional online survey. Annals of Medicine and Surgery (2012), 76, 103493.

AI Central. (n.d.). Retrieved February 23, 2022, from https://aicentral.acrdsi.org/

AI for Radiology. (n.d.). Retrieved February 23, 2022, from https://grand-challenge.org/aiforradiology/

Alexander, A., Jiang, A., Ferreira, C., & Zurkiya, D. (2020). An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging. Journal of the American College of Radiology: JACR, 17(1 Pt B), 165–170.

Allen, B., Agarwal, S., Coombs, L., Wald, C., & Dreyer, K. (2021). 2020 ACR Data Science Institute Artificial Intelligence Survey. Journal of the American College of Radiology: JACR, 18(8), 1153–1159.

Banerjee, M., Chiew, D., Patel, K. T., Johns, I., Chappell, D., Linton, N., Cole, G. D., Francis, D. P., Szram, J., Ross, J., & Zaman, S. (2021). The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Medical Education, 21(1), 429.

Bash, S., Johnson, B., Gibbs, W., Zhang, T., Shankaranarayanan, A., & Tanenbaum, L. N. (2021). Deep Learning Image Processing Enables 40 % Faster Spinal MR Scans Which Match or Exceed Quality of Standard of Care : A Prospective Multicenter Multireader Study. Clinical Neuroradiology. https://doi.org/10.1007/s00062-021-01121-2

Bash, S., Wang, L., Airriess, C., Zaharchuk, G., Gong, E., Shankaranarayanan, A., & Tanenbaum, L. N. (2021). Deep Learning Enables 60 % Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial. AJNR. American Journal of Neuroradiology, 42(12), 2130–2137.

Bennett, C. C., & Hauser, K. (2013). Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artificial Intelligence in Medicine, 57(1), 9–19.

Bisdas, S., Topriceanu, C.-C., Zakrzewska, Z., Irimia, A.-V., Shakallis, L., Subhash, J., Casapu, M.-M., Leon-Rojas, J., Pinto Dos Santos, D., Andrews, D. M., Zeicu, C., Bouhuwaish, A. M., Lestari, A. N., Abu-Ismail, L. ’i, Sadiq, A. S., Khamees, A. ’atasim, Mohammed, K. M. G., Williams, E., Omran, A. I.,… Ebrahim, E. H. (2021). Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students’ Perception. Frontiers in Public Health, 9, 795284.

Blease, C., Kharko, A., Bernstein, M., Bradley, C., Houston, M., Walsh, I., Hägglund, M., DesRoches, C., & Mandl, K. D. (2022). Machine learning in medical education: a survey of the experiences and opinions of medical students in Ireland. BMJ Health & Care Informatics, 29(1). https://doi.org/10.1136/ bmjhci-2021-100480

Brown, A. D., & Marotta, T. R. (2018). Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. Journal of the American Medical Informatics Association: JAMIA, 25(5), 568–571.

Center for Devices, & Radiological Health. (2021, June 22). Digital Health Software Precertification (Pre-Cert) program.
U.S. Food and Drug Administration. https://www.fda.gov/ medical-devices/digital-health-center-excellence/digital-health- software-precertification-pre-cert-program

Clinical radiology UK workforce census 2019 report. (2019). https://www.rcr.ac.uk/publication/clinical-radiology-uk- workforce-census-2019-report

COCIR, the European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry. (2020). Market Access Pathways for Digital Health Solutions. https://www.cocir.org/fileadmin/Publications_2020/20062_ COCIR_Market_Access_Pathways_Digital_Health.pdf

Collado-Mesa, F., Alvarez, E., & Arheart, K. (2018). The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program. Journal of the American College of Radiology: JACR, 15(12), 1753–1757.

Core Health Indicators in the WHO European Region 2015. Special focus: Human resources for health. (2017, August 14). World Health Organization. https://www.euro.who.int/en/ data-and-evidence/evidence-resources/core-health-indicators- in-the-who-european-region/core-health-indicators-in-the- who-european-region-2015.-special-focus-human-resources- for-health

Dantas, L. F., Fleck, J. L., Cyrino Oliveira, F. L., & Hamacher, S. (2018). No-shows in appointment scheduling - a systematic literature review. Health Policy, 122(4), 412–421.

Esses, S. J., Lu, X., Zhao, T., Shanbhogue, K., Dane, B., Bruno, M., & Chandarana, H. (2018). Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. Journal of Magnetic Resonance Imaging: JMRI, 47(3), 723–728.

European Commission. (2021). Proposal for a Regulation Of The European Parliament And Of The Council Laying Down
Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Act. https://eur-lex. europa.eu/resource.html?uri=cellar:e0649735-a372-11eb- 9585-01aa75ed71a1.0001.02/DOC_1&format=PDF

General Data Protection Regulation (GDPR) – Official Legal Text. (2016, July 13). General Data Protection Regulation (GDPR). https://gdpr-info.eu/

Hata, A., Yanagawa, M., Yoshida, Y., Miyata, T., Tsubamoto, M., Honda, O., & Tomiyama, N. (2020). Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation. AJR. American Journal of Roentgenology, 215(6), 1321–1328.

Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., & Steeden, J. A. (2019). Real-time cardiovascular MR with
spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 81(2), 1143–1156.

Higaki, T., Nakamura, Y., Zhou, J., Yu, Z., Nemoto, T., Tatsugami, F., & Awai, K. (2020). Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Academic Radiology, 27(1), 82–87.

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? In arXiv [cs.AI]. arXiv. http://arxiv.org/ abs/1712.09923

Hötker, A. M., Da Mutten, R., Tiessen, A., Konukoglu, E., & Donati, O. F. (2021). Improving workflow in prostate MRI: AI- based decision-making on biparametric or multiparametric MRI. Insights into Imaging, 12(1), 112.

Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digital Medicine, 3, 136.

Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311.

Kaissis, G., Ziller, A., Passerat-Palmbach, J., Ryffel, T., Usynin, D., Trask, A., Lima, I., Mancuso, J., Jungmann, F., Steinborn, M.-M., Saleh, A., Makowski, M., Rueckert, D., & Braren, R. (2021). End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence, 3(6), 473–484.

Kansal, R., Bawa, A., Bansal, A., Trehan, S., Goyal, K., Goyal, N., & Malhotra, K. (2022). Differences in Knowledge and Perspectives on the Usage of Artificial Intelligence Among Doctors and Medical Students of a Developing Country: A Cross- Sectional Study. Cureus, 14(1), e21434.

Katsari, K., Penna, D., Arena, V., Polverari, G., Ianniello, A., Italiano, D., Milani, R., Roncacci, A., Illing, R. O., & Pelosi, E. (2021). Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Physics, 8(1), 25.

Kerpel, A., Marom, E. M., Green, M., Eifer, M., Konen, E., Mayer, A., & Betancourt Cuellar, S. L. (2021). Ultra-Low Dose Chest CT with Denoising for Lung Nodule Detection. The Israel Medical Association Journal: IMAJ, 23(9), 550–555.

Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019).
Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of
Medical Images: Results from Recently Published Papers. Korean Journal of Radiology: Official Journal of the Korean Radiological Society, 20(3), 405–410.

Kim, K. H., & Park, S.-H. (2017). Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI. Magnetic Resonance Imaging, 37, 139–146.

Kolyshkina, I., & Simoff, S. (2021). Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach. Frontiers in Big Data, 4, 660206.

Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720.

Kritikos, M. (2020). What if artificial intelligence in medical imaging could accelerate Covid-19 treatment? Think Tank
- European Parliament. https://www.europarl.europa.eu/ thinktank/en/document/EPRS_ATA(2020)656333

Kurasawa, H., Hayashi, K., Fujino, A., Takasugi, K., Haga, T., Waki, K., Noguchi, T., & Ohe, K. (2016). Machine-Learning- Based Prediction of a Missed Scheduled Clinical Appointment by Patients With Diabetes. Journal of Diabetes Science and Technology, 10(3), 730–736.

Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H., & Ferrante, E. (2020). Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12592–12594.

Larson, D. B., Johnson, L. W., Schnell, B. M., Salisbury, S. R., & Forman, H. P. (2011). National trends in CT use in the emergency department: 1995-2007. Radiology, 258(1), 164–173.

Le, V., Frye, S., Botkin, C., Christopher, K., Gulaka, P., Sterkel, B., Frye, R., Muzaffar, R., & Osman, M. (2020). Effect of PET Scan with Count Reduction Using AI-Based Processing Techniques on Image Quality. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(supplement 1), 3095–3095.

Levin, D. C., Parker, L., & Rao, V. M. (2017). Recent Trends in Imaging Use in Hospital Settings: Implications for Future Planning. Journal of the American College of Radiology: JACR, 14(3), 331–336.

Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E.J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet. Digital Health, 1(6), e271–e297.

Lotan, E., Tschider, C., Sodickson, D. K., Caplan, A. L., Bruno, M., Zhang, B., & Lui, Y. W. (2020). Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future. Journal of the American College of Radiology: JACR, 17(9), 1159–1162.

Mairhöfer, D., Laufer, M., Simon, P. M., Sieren, M., Bischof, A., Käster, T., Barth, E., Barkhausen, J., & Martinetz, T. (2021). An AI-based Framework for Diagnostic Quality Assessment of Ankle Radiographs. https://openreview.net/pdf?id=bj04hJss_xZ

Makeeva, V., Gichoya, J., Hawkins, C. M., Towbin, A. J., Heilbrun, M., & Prater, A. (2019). The Application of Machine Learning to Quality Improvement Through the Lens of the Radiology Value Network. Journal of the American College of Radiology: JACR, 16(9 Pt B), 1254–1258.

McLeavy, C. M., Chunara, M. H., Gravell, R. J., Rauf, A., Cushnie, A., Staley Talbot, C., & Hawkins, R. M. (2021). The future of CT: deep learning reconstruction. Clinical Radiology, 76(6), 407–415.

Medical AI Evaluation. (n.d.). Retrieved February 23, 2022, from https://ericwu09.github.io/medical-ai-evaluation/

Michoud, L., Tschudi, Y., & Villien, Y. (2019). Artificial Intelligence for Medical Imaging: Market and Technology Report 2020. Yole Développement. https://s3.i-micronews.com/ uploads/2020/01/YDR20059-AI-for-Medical-Imaging_Yole_ sample.pdf

Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 122.

Nagendran, M., Chen, Y., Lovejoy, C. A., Gordon, A. C., Komorowski, M., Harvey, H., Topol, E. J., Ioannidis, J. P. A., Collins, G. S., & Maruthappu, M. (2020). Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368. https://doi.org/10.1136/bmj.m689

Nelson, A., Herron, D., Rees, G., & Nachev, P. (2019). Predicting scheduled hospital attendance with artificial intelligence. Npj Digital Medicine, 2(1), 26.

Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453.

Ooi, S. K. G., Makmur, A., Soon, A. Y. Q., Fook-Chong, S., Liew, C., Sia, S. Y., Ting, Y. H., & Lim, C. Y. (2021). Attitudes toward artificial intelligence in radiology with learner needs assessment within radiology residency programmes: a national multi-programme survey. Singapore Medical Journal, 62(3), 126–134.

Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., & Nanayakkara, P. (2019). Introducing Artificial Intelligence Training in Medical Education. JMIR Medical Education, 5(2), e16048.

Park, J., Hwang, D., Kim, K. Y., Kang, S. K., Kim, Y. K., & Lee, J. S. (2018). Computed tomography super-resolution using deep convolutional neural network. Physics in Medicine and Biology, 63(14), 145011.

Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: a multicentre survey. European Radiology, 29(4), 1640–1646.

Population ages 65 and above. (n.d.). The World Bank. Retrieved February 23, 2022, from https://data.worldbank.org/ indicator/SP.POP.65UP.TO.ZS

Prevedello, L. M., Erdal, B. S., Ryu, J. L., Little, K. J., Demirer, M., Qian, S., & White, R. D. (2017). Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology, 285(3), 923–931.

Rezazade Mehrizi, M. H., van Ooijen, P., & Homan, M. (2021). Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. European Radiology, 31(4), 1805–1811.

Rockenbach, M. A. B. (2021, June 13). Multimodal AI in healthcare: Closing the gaps. CodeX. https://medium.com/codex/ multimodal-ai-in-healthcare-1f5152e83be2

Rudie, J. D., Gleason, T., Barkovich, M. J., Wilson, D. M., Shankaranarayanan, A., Zhang, T., Wang, L., Gong, E., Zaharchuk, G., & Villanueva-Meyer, J. E. (2022). Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI. Radiology: Artificial Intelligence, e210059.

Schreiber-Zinaman, J., & Rosenkrantz, A. B. (2017). Frequency and reasons for extra sequences in clinical abdominal MRI examinations. Abdominal Radiology (New York), 42(1), 306–311.

Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nature Medicine, 27(12), 2176–2182.

Shelmerdine, S. C., Arthurs, O. J., Denniston, A., & Sebire, N. J. (2021). Review of study reporting guidelines for clinical studies using artificial intelligence in healthcare. BMJ Health & Care Informatics, 28(1). https://doi.org/10.1136/ bmjhci-2021-100385

Shinagare, A. B., Ip, I. K., Abbett, S. K., Hanson, R., Seltzer, S. E., & Khorasani, R. (2014). Inpatient imaging utilization: trends of the past decade. AJR. American Journal of Roentgenology, 202(3), W277–W283.

Singh, R., Digumarthy, S. R., Muse, V. V., Kambadakone, A. R., Blake, M. A., Tabari, A., Hoi, Y., Akino, N., Angel, E., Madan, R., & Kalra, M. K. (2020). Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR. American Journal of Roentgenology, 214(3), 566–573.

Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., Azam, A., Monzon, L., & Poon, D. S. (2020). Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey. Insights into Imaging, 11(1), 14.

Smith-Bindman, R., Miglioretti, D. L., Johnson, E., Lee, C., Feigelson, H. S., Flynn, M., Greenlee, R. T., Kruger, R. L., Hornbrook, M. C., Roblin, D., Solberg, L. I., Vanneman, N., Weinmann, S., & Williams, A. E. (2012). Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA: The Journal of the American Medical Association, 307(22), 2400–2409.

Smith-Bindman, R., Miglioretti, D. L., & Larson, E. B. (2008). Rising use of diagnostic medical imaging in a large integrated health system. Health Affairs, 27(6), 1491–1502.

The Medical Futurist. (n.d.). The Medical Futurist. Retrieved February 23, 2022, from https://medicalfuturist.com/fda- approved-ai-based-algorithms/

Towards trustable machine learning. (2018). Nature Biomedical Engineering, 2(10), 709–710.

Trivedi, H., Mesterhazy, J., Laguna, B., Vu, T., & Sohn, J. H. (2018). Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson’s Natural Language Processing Algorithm. Journal of Digital Imaging, 31(2), 245–251.

Tsao, D. N. (2020, July 27). AI in medical diagnostics 2020- 2030: Image recognition, players, clinical applications, forecasts: IDTechEx. https://www.idtechex.com/en/research- report/ai-in-medical-diagnostics-2020-2030-image- recognition-players-clinical-applications-forecasts/766

van Duffelen, J. (2021, February 22). Making a case for buying medical imaging AI: How to define the return on investment.
Aidence. https://www.aidence.com/articles/medical-imaging- ai-roi/

van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., & de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 31(6), 3797–3804.

Vokinger, K. N., Feuerriegel, S., & Kesselheim, A. S. (2021). Mitigating bias in machine learning for medicine. Communication & Medicine, 1, 25.

Wang, S., Cao, G., Wang, Y., Liao, S., Wang, Q., Shi, J., Li, C., & Shen, D. (2021). Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Frontiers in Radiology, 1. https://doi.org/10.3389/fradi.2021.781868

What is personal data? (2021, January 1). ICO - Information Commissioner’s Office; ICO. https://ico.org.uk/for-organisations/ guide-to-data-protection/guide-to-the-general-data-protection- regulation-gdpr/what-is-personal-data/what-is-personal-data

WHO. (n.d.-a). Ageing and health. Retrieved February 23, 2022, from https://www.who.int/news-room/fact-sheets/detail/ ageing-and-health

WHO. (n.d.-b). Noncommunicable diseases. Retrieved March 6, 2022, from https://www.who.int/news-room/fact-sheets/detail/ noncommunicable-diseases

Winder, M., Owczarek, A. J., Chudek, J., Pilch-Kowalczyk, J., & Baron, J. (2021). Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010-2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare (Basel, Switzerland), 9(11). https://doi.org/10.3390/healthcare9111557

Winkel, D. J., Heye, T., Weikert, T. J., Boll, D. T., & Stieltjes, B. (2019). Evaluation of an AI-Based Detection Software for Acute Findings in Abdominal Computed Tomography Scans: Toward an Automated Work List Prioritization of Routine CT Examinations. Investigative Radiology, 54(1), 55–59.

Wong, T. T., Kazam, J. K., & Rasiej, M. J. (2019). Effect of Analytics-Driven Worklists on Musculoskeletal MRI
Interpretation Times in an Academic Setting. AJR. American Journal of Roentgenology, 1–5.

Xu, F., Pan, B., Zhu, X., Gulaka, P., Xiang, L., Gong, E., Zhang, T., Wang, J., Lin, L., Ma, Y., & Gong, N.-J. (2020). Evaluation of Deep Learning Based PET Image Enhancement Method in Diagnosis of Lymphoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(supplement 1), 431–431.

Yoon, C. H., Torrance, R., & Scheinerman, N. (2021). Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned? Journal of Medical Ethics. https://doi.org/10.1136/medethics-2020-107102

Yusuf, M., Atal, I., Li, J., Smith, P., Ravaud, P., Fergie, M., Callaghan, M., & Selfe, J. (2020). Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. BMJ Open, 10(3), e034568.

Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham, Y., Clark, J., & Perrault, R. (2021). The AI Index 2021 Annual Report. In arXiv [cs.AI]. arXiv. http://arxiv.org/ abs/2103.06312

Zhang, Y., & Yu, H. (2018). Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE Transactions on Medical Imaging, 37(6), 1370–1381.

Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R., & Rosen, M. S. (2018). Image reconstruction by domain-transform manifold learning. Nature, 555(7697), 487–492.

Artificial Intelligence in medical imaging: What, How and Why?

    Artificial intelligence (AI) is a field that enables computer systems to solve problems by adapting to changing circumstances, often by mimicking human reasoning and judgement. Several demographic and healthcare trends are driving the use of AI in medical imaging. The amount of medical imaging data being acquired is steadily increasing (Larson et al., 2011; Smith-Bindman et al., 2008, 2012; Winder et al., 2021). There is also a widespread shortage of healthcare workers (Core Health Indicators in the WHO European Region 2015. Special Focus: Human Resources for Health, 2017) with an ever-increasing workload (Levin et al., 2017), and the number of medical imaging examinations is expected to grow exponentially over the next two decades (Tsao, 2020). Radiologists and radiology technologists are in particularly scarce supply (AAMC Report Reinforces Mounting Physician Shortage, 2021, Clinical Radiology UK Workforce Census 2019 Report, 2019). Finally, the ageing world population (Population Ages 65 and above, n.d.; WHO, n.d.-a) and an increasing global burden of chronic illnesses (WHO, n.d.-b) are expected to compound these problems in the near future.

    Broadly speaking, the advantages of AI in medical imaging could potentially include the ability to provide insights that would otherwise not be possible using traditional methods (such as humans looking at images) and to may do so in a faster and automated way (without the need for human interaction). AI-based solutions in medical imaging could improve and accelerate the detection of disease, generate in-depth risk assessment of disease development and progression, and may reduce subjectivity in the interpretation of medical imaging data.

    Over the past few years, the landscape of AI in medical imaging has changed dramatically. Many promising applications have arisen, the field has seen an unprecedented surge in funding, and we have seen positive trends in the adoption of AI solutions by radiologists, as well as their approval by regulatory bodies.

    Applications

    Although radiology departments provide a plethora of services, the core service provided is the imaging study. Applications of AI in medical imaging can therefore be categorized into those applied either before, during, or after the imaging study.

    Before Image Acquisition

    Several steps have to take place within the context of a radiology department’s workflow before a patient is undergoing imaging study. AI applications that aim to improve these steps are referred to as “upstream AI” and could potentially increase efficiency and provide more personalized decision making in a radiology department.

    Missed medical appointments are common, reduce the efficiency of hospitals, and waste resources (Dantas et al., 2018). Studies from Japan (Kurasawa et al., 2016) and the United Kingdom (Nelson et al., 2019) have shown that AI can be used to predict no-shows with high accuracy. This allows the use of targeted strategies to reduce the likelihood of a patient missing their appointment, including sending automated reminders.

    One of the most important decisions made in the radiology department is the exact scan protocol to use on a given patient. While this applies to all imaging modalities, the widest range of choice is seen with magnetic resonance imaging (MRI). This includes choosing the appropriate set of sequences and making decisions about whether or not to administer intravenous contrast agents. Natural language classifiers that interpret the narrative text of the clinician’s scan requests have been used to select appropriate MRI protocols. In one study, a gradient boosting classifier predicted the appropriate MRI brain protocol to use based on the scan request with high accuracy (95 %) (Brown & Marotta, 2018). For musculoskeletal MRI, a deep learning classifier was 83 % accurate in determining the need for a contrast agent (Trivedi et al., 2018). Such applications can substantially improve efficiency by foregoing the time-consuming task of radiologists going through unstructured narrative scan requests written by referring clinicians.

    During Image Acquisition

    Substantial improvements have recently been made in the use of AI for improving image quality. In a recent survey, radiologists identified the enhancement of image quality as being the most mainstream current use case for AI in medical imaging (Alexander et al., 2020). While earlier attempts at reducing image noise using deep learning techniques were criticized for removing details from the images that jeopardized the visibility of essential features within the images, more recent implementations have made this issue largely obsolete.

     

    Potentials of AI

     

    In particular, deep learning techniques like generative adversarial networks have shown great potential in image denoising (Wang et al., 2021). Some of these applications target the image reconstruction stage (where the raw sensor data is converted into an interpretable image) providing superior signal-to-noise ratios and reducing image artefacts (Zhu et al., 2018). In lung cancer screening, deep-learning-based image denoising improved both the image quality and the diagnostic accuracy of ultra-low-dose computed tomography (CT) for detecting suspicious lung nodules (Hata et al., 2020; Kerpel et al., 2021). Scans that were 40-60 % acquired faster than standard scans and enhanced with deep-learning-based algorithms were of better image quality than, and similar diagnostic value as, standard scans of the brain (Bash, Wang, et al., 2021; Rudie et al., 2022) and spine (Bash, Johnson, et al., 2021). Similarly, convolutional neural networks can be used to reduce specific CT and MRI artefacts and improve spatial resolution (Hauptmann et al., 2019; K. H. Kim & Park, 2017; Park et al., 2018; Y.Zhang & Yu, 2018).

    Reconstruction algorithms based on deep learning have enabled ultra-low-dose computed tomography scans to be acquired while maintaining diagnostic quality. This is of particular benefit in children and pregnant women, where reduction of radiation dose to the absolute minimum is critical. These deep- learning-based CT image reconstruction approaches are associated with lower image noise and better image texture than state-of-the-art alternatives like iterative reconstruction (Higaki et al., 2020; McLeavy et al., 2021; Singh et al., 2020). In positron emission tomography, deep learning can reduce injected tracer dosage by one-third and scan times by up to half while maintaining scan quality (Katsari et al., 2021; Le et al., 2020; Xu et al., 2020).

    After Image Acquisition

    Radiology technologists and radiologists usually share the task of calling back patients for repeat examinations, but doing so consistently and reliably is exceedingly difficult due to time constraints. Image quality of AI enhanced brain MRI scans has been shown to be equal to or better than conventional scans, even when using acquisition protocols that reduce scan times by 45-60% (Schreiber-Zinaman & Rosenkrantz, 2017).

    Prioritizing scan reading on a radiologist’s worklist is often done based on several factors including the type of scan, the referring department, and direct communication with the radiologist about the scan’s urgency. Several approaches have been tested to influence the order in which scans are read to improve efficiency and ensure the most critical scans are seen first. These include assigning different radiologists specific exams based on how quickly they read certain scan types (Wong et al., 2019) and automatically detecting emergent findings on the images and pushing these cases to the “top of the list” (Prevedello et al., 2017; Winkel et al., 2019).

    About 70 % of all AI-based solutions in radiology focus on “perception” - a category of functionalities that includes segmentation, feature extraction, as well as detection and classification of pathology (Rezazade Mehrizi et al., 2021). Within this category, the majority of tools extract information from the imaging data with or without quantification as well as draw the user’s attention to potential pathology (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). Over the past few years, some of the most promising applications in this category have included the detection of brain vessel occlusion, brain haemorrhage, lung nodules, pneumothorax and pleural effusions, fractures, and the characterization of breast lesions.

    Funding

    The total amount of investment in AI-based medical imaging companies amounted to $ 1.17 billion between 2014 and 2019 (Alexander et al., 2020). In the same period, the number of companies in this space tripled, leading to a drop of almost 30 % in the median investment in each company (Alexander et al., 2020). Between 2019 and 2020, private investment in AI companies increased by 9.3 % (D. Zhang et al., 2021). By 2030, investment in AI-based solutions in medical imaging is expected to exceed $3 billion (Tsao, 2020).

    Adoption

    There have been positive trends in the adoption of AI tools by radiologists and radiology technologists over the past few years. Between 2015 and 2020, AI use in radiology departments went up by 30 %, according to a survey of 1,861 radiologists conducted by the American College of Radiology (ACR) (Allen et al., 2021).

    Despite this promising trend, the adoption of AI tools is widely considered to be disproportionately low relative to the amount of funding, the number of companies, and the perceived promise of these tools. The ACR survey provides some insight into why and offers a starting point for developing strategies to improve AI adoption.

    Almost three-quarters of radiologists who were not using AI had no plans to do so in the future because they either were not convinced of its benefits or did not think the associated costs were justified (Allen et al., 2021).

    Similar results have been found in other studies, with radiologists citing scepticism in the capabilities of AI tools and the fact that relatively few have regulatory approval as reasons for not adopting them in their practice (Alexander et al., 2020).

    Regulatory success

    Until August 2019, 60 % of available AI-based radiology solutions had no regulatory approval (Rezazade Mehrizi et al., 2021). As of April 2020, a total of 100 AI solutions had a CE mark, a prerequisite for them to be made commercially available as medical devices in Europe (van Leeuwen et al., 2021). As of the time of writing, more than 150 AI solutions have gained FDA clearance (AI Central, n.d.). Several useful databases of approved or cleared AI-based solutions in medical healthcare are currently available (AI Central, n.d., AI for Radiology, n.d., Medical AI Evaluation, n.d., The Medical Futurist, n.d.)
     

    The past few years have seen exponential growth in the interest in AI in medical imaging, both in terms of the amount of research and the amount of money being invested in the field. This interest runs the gamut of the radiology workflow, but “perception” applications - for the quantification of biomarkers and the detection of disease processes - have dominated so far. In the radiology community, trends have shifted from AI being perceived as an unwelcome intruder to increased adoption, albeit with some scepticism and hesitation regarding its value. The first AI solutions in medical imaging were granted regulatory approval, and we have seen the first indications of how such solutions may be reimbursed.

    New directions

    With increasing acknowledgement that a large proportion of AI’s potential in medical imaging may lie in “upstream” or “non-interpretative” applications, the field is likely to expand its focus in the coming years. This will include more research into applications that improve the efficiency of radiology workflows and provide more personalized patient care (Alexander et al., 2020). AI is likely to become more involved even earlier in the patient management process - i.e. before the clinician decides that a diagnostic image test is necessary. Such applications, essentially clinical decision support systems, have successfully been used for decision-making about treatments in several settings (Bennett & Hauser, 2013; Komorowski et al., 2018), successfully used in treatment decision making (Bennett & Hauser, 2013). In the future, AI solutions may draw clinicians’ attention to the need for further imaging tests based on reviewing the patient’s clinical information, laboratory tests, and prior imaging tests (Makeeva et al., 2019).

     

    Perception of AI

    The vast majority (77-84 %) of currently available AI solutions in medical imaging target CT, MRI and plain radiographs (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). Nuclear imaging techniques, such as positron emission tomography (PET). provide unique information not readily gained from other modalities. PET has thus far been largely neglected in terms of AI research (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021), and is thus a potentially promising avenue for the field’s expansion.

    AI research is also expected to undergo a shift in the type of data being used. The typical inpatient receives more than one imaging study during their hospital stay (Shinagare et al., 2014). Despite this, only about 3 % of current AI-based radiology solutions combine data from multiple modalities (Rezazade Mehrizi et al., 2021; van Leeuwen et al., 2021). Combining data from multiple imaging sources may improve the diagnostic capabilities of AI solutions. Furthermore, future AI solutions in radiology are likely to combine imaging information, clinical information, as well as non- imaging diagnostic tests (Huang et al., 2020). By doing this, AI solutions may be able to identify patterns in the data collected during a patient’s hospital stay that may not be readily identifiable by healthcare workers (Rockenbach, 2021). This could ultimately lead to more accurate diagnoses and could help inform better and more personalized treatment decisions.

    The expectations for AI-based medical imaging solutions are also likely to shift from the current focus of triage, image enhancement and automation. With increasing algorithmic complexity, data availability, and experience with these tools, this shift may lead to AI solutions reaching specific diagnoses and recommending specific steps in a patient’s management plan. Similar to how the introduction of the first AI tools for image screening and processing around 2018 spurred investment in the field, marketing analyses predict a similar investment boost in the next few years as AI tools providing specific diagnoses and management steps become more widespread (Michoud et al., 2019).

    One important criticism of the current, arguably still nascent, landscape of AI in medical imaging is that it is too fragmented. Radiology professionals would likely welcome a more streamlined integration of AI solutions in their daily workflow. This includes seamless integration of these solutions into established radiology workflows, with as much as possible happening “in the background” without user input. Furthermore, the outputs of these solutions could be integrated into available radiological information systems. Consequently, the field could move from the plethora of currently available niche AI solutions, each targeted towards a single very specific application, to broader software suites that perform many different functions for a given imaging modality or body region.

    The fragmented investment in the AI in medical imaging market (Alexander et al., 2020) fosters innovation, allowing many players to test out different strategies in this emerging field. However, in the long term, consolidation may increase adoption and stimulate the kind of seamless integration into existing workflows that is needed, allowing fewer companies to offer these solutions at scale (Alexander et al., 2020).

    Challenges

    Quality and reporting of evidence

    In a review of 100 CE-marked AI solutions, 64 % of them had no peer-reviewed scientific evidence for their efficacy (van Leeuwen et al., 2021). Where there was scientific evidence, the level was low, rarely exceeding the demonstration of diagnostic accuracy (van Leeuwen et al., 2021). Another systematic review of the evidence for deep learning algorithms in medical imaging found a generally high diagnostic accuracy, albeit with a high risk of bias across studies (Aggarwal et al., 2021). The main sources of bias include the lack of external validation (D. W. Kim et al., 2019; Liu et al., 2019), insufficiently detailed reporting of results (Liu et al., 2019), retrospective study design (Nagendran et al., 2020), and the inaccessibility of data and code to reviewers and readers (Nagendran et al., 2020).

    Overall, studies on AI tools have shown a worrying lack of standardized reporting and adherence to recommended reporting guidelines (Aggarwal et al., 2021; Yusuf et al., 2020). This is despite the fact that several extensions to established reporting guidelines, as well as AI-specific guidelines, are currently available (Shelmerdine et al., 2021). Widespread implementation of these guidelines should be a focus of AI developers in the future.

    AI developers should also be cognizant that the currently “acceptable” level of evidence for AI-based solutions is likely to become obsolete in the near future. Both regulators and potential users will likely demand higher levels of evidence for these solutions, akin to the evidence required for new pharmaceutical drugs. In the next few years, will see more of these AI solutions being tested in randomized clinical trials. In the more distant future, it is plausible that such expectations will go beyond providing evidence of the safety, efficacy, or diagnostic performance of these solutions, to the demonstration that they provide added monetary or societal value.

    Rising up to the challenge of improving the quality and reporting of evidence for AI-based solutions may pay off in the long run. It could reduce the risk of bias in AI studies, could allow the thorough and transparent assessment of study quality by potential users and regulators, and could facilitate systematic reviews and meta-analyses. These steps may increase the trust in, and uptake of, AI-based solutions and ensure that they offer realistic, sustainable improvements in people’s lives.

    Regulation

    Several aspects inherent to AI pose challenges to attempts at regulating it like other healthcare interventions. The inner workings of AI solutions are often opaque and difficult to comprehensively describe in a manner traditionally expected by regulatory bodies.

    The past few years have shown us that these regulatory challenges are far from intractable. Both the Food and Drug Administration and the European Commission have recently proposed initial regulatory frameworks for AI solutions (Center for Devices & Radiological Health, 2021; European Commission, 2021).

    In part as a response to the transparency necessary for regulatory approval, researchers have made substantial progress in making AI’s decision-making more understandable and explainable. This movement towards “interpretable AI” will gain further impetus in the near future as reliance on AI for real-world clinical decision-making increases.

    This has many advantages, including making regulatory approval easier, increasing trust in these solutions by users, minimizing biases, and improving the reproducibility of these solutions (Holzinger et al., 2017; Kolyshkina & Simoff, 2021; “Towards Trustable Machine Learning,” 2018; Yoon et al., 2021).

    Data privacy

    From development and testing to implementation, AI solutions in medical imaging require access to patient data. This has raised concerns about data privacy, which is a multifaceted and highly complex issue (Murdoch, 2021) that is prominently represented in the regulatory pathways of different countries (COCIR, the European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry, 2020). Suggested solutions to the data privacy question have ranged from those focusing on oversight to more technical approaches.

    The patients providing the data have to be made aware that they are doing so, as well as be informed about why and how their data will be used (Lotan et al., 2020), as explicitly stipulated in the EU’s General Data Protection Regulation (GDPR) (General Data Protection Regulation (GDPR) – Official Legal Text, 2016). Considering the fast-paced nature of the development of AI solutions, whether patients can be kept sufficiently informed as these algorithms are continuously retrained has been questioned (Kritikos, 2020). While fully anonymized data is not subject to such strict requirements under the GDPR (What Is Personal Data?, 2021), anonymization is exceedingly difficult to achieve for medical imaging data.

    The data privacy issue will have to be approached on several fronts. In addition to legislation governing the use of patient data, it is becoming increasingly clear that everyone involved in the development and use of AI solutions - developers, payers, regulatory bodies, researchers and radiologists - has a role to play in ensuring that the data is protected and used responsibly.

    Moreover, the next few years will likely see further research into technical approaches to strengthen data protection. These include better ways to reduce the chances of data being traced back to individuals, methods for keeping sensitive data stored locally even when the algorithm being trained is hosted in some “central” location, data perturbation to minimize the information within a given dataset pertaining to individual patients, and data encryption (G. Kaissis et al., 2021; G. A. Kaissis et al., 2020).

    hexagon

     

    Democratization

    If AI in medical imaging is to live up to its potential, the algorithms being developed have to work for everyone. This “democratization” of AI involves ensuring that healthcare providers have the knowledge and skills needed to use AI-based solutions. With a few exceptions (Paranjape et al., 2019), medical student curricula currently include little to no dedicated education about AI (Banerjee et al., 2021; Blease et al., 2022). Surveys from around the world have shown that medical students’ and doctors’ (Ahmed et al., 2022; Bisdas et al., 2021; Collado-Mesa et al., 2018; Kansal et al., 2022; Pinto Dos Santos et al., 2019; Sit et al., 2020) exposure to AI during training was low despite the high demand for more AI education (Kansal et al., 2022; Ooi et al., 2021; Sit et al., 2020). In addition, there are still large differences between genders and countries in the perceived knowledge about AI amongst medical students (Bisdas et al., 2021). There are many reasons for these differences and many challenges associated with the widespread integration of AI education into healthcare training curricula. In the coming years, strategies to tackle these issues should be investigated to ensure that future healthcare providers are equipped with the knowledge and skills they need to work in an environment where AI plays a growing role.

    Democratization also involves ensuring that patients of different genders, lifestyles, ethnicities, and geographical locations can benefit from AI-based solutions. For this to happen, these solutions have to be accessible and their performance generalizable. The latter requires the acquisition of diverse data from multiple institutions, preferably from multiple countries, for training AI-based solutions. It also requires the implementation of safeguards to ensure that sources of bias throughout the development process are not propagated to the trained algorithm (Vokinger et al., 2021), an issue that has only recently come to the forefront (Larrazabal et al., 2020; Obermeyer et al., 2019; Seyyed-Kalantari et al., 2021).

    Reimbursement

    As countries’ policies for regulating AI in healthcare gradually begin to take shape, one important aspect that needs attention is who will pay for these AI solutions, and according to what framework.

    Many consider Germany’s 2020 Digital Supply Act a step in the right direction for reimbursement of digital health solutions. Under this policy, digital applications prescribed by physicians are reimbursable by statutory health insurance if they are proven to be safe, be compliant with data privacy statutes, and improve patient care. The UK, on the other hand, has released a guide for potential buyers of AI-based solutions, which serves as a starting point for companies to prepare for reimbursement applications (A Buyer’s Guide to AI in Health and Care, 2020).

    Thus far, reimbursement success stories in the digital health space have been few and far between (Brink- mann-Sass et al., 2020; Hassan, 2021). This is in part due to requirements varying greatly by country (COCIR, the European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry, 2020). In general, providers of digital health solutions will need to provide evidence for the overall value that these solutions bring, including detailed health economics studies showing potential cost savings.

    Radiology’s position as a service provider to multiple hospital departments means that AI-based solutions in this space will be expected to show a far-reaching impact (van Duffelen, 2021). Companies will need to show short-term value (e.g. faster/better image reading and reporting) as well as long-term value (e.g. early diagnosis and treatment, disease prevention, reduction in unnecessary follow-up). The coming years will see companies compete to demonstrate such impact, while at the same time experimenting with different pricing models and navigating the evolving bureaucratic reimbursement landscape.

    Over the past few years, the field of AI in medical imaging has undergone a rapid but steady transformation. AI can now achieve things in radiology that few people thought possible a mere decade ago. The field is also gradually overcoming one of its most significant perceived hurdles - regulatory approval. In addition, while fear and scepticism dominated radiologists’ perception of the future of AI in their speciality a few years ago, this is no longer the case.

    The massive progress and interest in the field of AI in medical imaging is expected to continue into 2022 and beyond. Several exciting transformations await the field - it will likely expand its focus in the coming years to improve radiology workflow efficiency, involve hitherto neglected imaging modalities, combine data from multiple modalities, and provide more concrete diagnostic predictions and management recommendations. Easy-to-use and comprehensive software suites utilizing AI will be incorporated into existing radiology workflows, making radiologists’ and radiographers’ work easier and more efficient.

    As in any rapidly growing field, several scientific, regulatory, and economic challenges face AI in medical imaging. But the past few years have shown us that even the most difficult problems can be solved. Developers and users of AI-based solutions need to be aware of these issues so that they can adapt their strategies to changing expectations on a regulatory and societal level. Doing this will allow them to thrive in a fascinating field with the potential to improve virtually every aspect of healthcare.

    AAMC Report Reinforces Mounting Physician Shortage. (2021). AAMC. https://www.aamc.org/news-insights/press- releases/aamc-report-reinforces-mounting-physician-shortage

    A buyer’s guide to AI in health and care. (2020). NHS Transformation Directorate. https://www.nhsx.nhs.uk/ai-lab/ explore-all-resources/adopt-ai/a-buyers-guide-to-ai-in-health- and-care/

    Aggarwal, R., Sounderajah, V., Martin, G., Ting, D. S. W., Karthikesalingam, A., King, D., Ashrafian, H., & Darzi, A. (2021). Diagnostic accuracy of deep learning in medical imaging: a systematic review and meta-analysis. NPJ Digital Medicine, 4(1), 65.

    Ahmed, Z., Bhinder, K. K., Tariq, A., Tahir, M. J., Mehmood, Q., Tabassum, M. S., Malik, M., Aslam, S., Asghar, M. S., & Yousaf, Z. (2022). Knowledge, attitude, and practice of artificial intelligence among doctors and medical students in Pakistan: A cross-sectional online survey. Annals of Medicine and Surgery (2012), 76, 103493.

    AI Central. (n.d.). Retrieved February 23, 2022, from https://aicentral.acrdsi.org/

    AI for Radiology. (n.d.). Retrieved February 23, 2022, from https://grand-challenge.org/aiforradiology/

    Alexander, A., Jiang, A., Ferreira, C., & Zurkiya, D. (2020). An Intelligent Future for Medical Imaging: A Market Outlook on Artificial Intelligence for Medical Imaging. Journal of the American College of Radiology: JACR, 17(1 Pt B), 165–170.

    Allen, B., Agarwal, S., Coombs, L., Wald, C., & Dreyer, K. (2021). 2020 ACR Data Science Institute Artificial Intelligence Survey. Journal of the American College of Radiology: JACR, 18(8), 1153–1159.

    Banerjee, M., Chiew, D., Patel, K. T., Johns, I., Chappell, D., Linton, N., Cole, G. D., Francis, D. P., Szram, J., Ross, J., & Zaman, S. (2021). The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Medical Education, 21(1), 429.

    Bash, S., Johnson, B., Gibbs, W., Zhang, T., Shankaranarayanan, A., & Tanenbaum, L. N. (2021). Deep Learning Image Processing Enables 40 % Faster Spinal MR Scans Which Match or Exceed Quality of Standard of Care : A Prospective Multicenter Multireader Study. Clinical Neuroradiology. https://doi.org/10.1007/s00062-021-01121-2

    Bash, S., Wang, L., Airriess, C., Zaharchuk, G., Gong, E., Shankaranarayanan, A., & Tanenbaum, L. N. (2021). Deep Learning Enables 60 % Accelerated Volumetric Brain MRI While Preserving Quantitative Performance: A Prospective, Multicenter, Multireader Trial. AJNR. American Journal of Neuroradiology, 42(12), 2130–2137.

    Bennett, C. C., & Hauser, K. (2013). Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach. Artificial Intelligence in Medicine, 57(1), 9–19.

    Bisdas, S., Topriceanu, C.-C., Zakrzewska, Z., Irimia, A.-V., Shakallis, L., Subhash, J., Casapu, M.-M., Leon-Rojas, J., Pinto Dos Santos, D., Andrews, D. M., Zeicu, C., Bouhuwaish, A. M., Lestari, A. N., Abu-Ismail, L. ’i, Sadiq, A. S., Khamees, A. ’atasim, Mohammed, K. M. G., Williams, E., Omran, A. I.,… Ebrahim, E. H. (2021). Artificial Intelligence in Medicine: A Multinational Multi-Center Survey on the Medical and Dental Students’ Perception. Frontiers in Public Health, 9, 795284.

    Blease, C., Kharko, A., Bernstein, M., Bradley, C., Houston, M., Walsh, I., Hägglund, M., DesRoches, C., & Mandl, K. D. (2022). Machine learning in medical education: a survey of the experiences and opinions of medical students in Ireland. BMJ Health & Care Informatics, 29(1). https://doi.org/10.1136/ bmjhci-2021-100480

    Brown, A. D., & Marotta, T. R. (2018). Using machine learning for sequence-level automated MRI protocol selection in neuroradiology. Journal of the American Medical Informatics Association: JAMIA, 25(5), 568–571.

    Center for Devices, & Radiological Health. (2021, June 22). Digital Health Software Precertification (Pre-Cert) program.
    U.S. Food and Drug Administration. https://www.fda.gov/ medical-devices/digital-health-center-excellence/digital-health- software-precertification-pre-cert-program

    Clinical radiology UK workforce census 2019 report. (2019). https://www.rcr.ac.uk/publication/clinical-radiology-uk- workforce-census-2019-report

    COCIR, the European Coordination Committee of the Radiological, Electromedical and Healthcare IT Industry. (2020). Market Access Pathways for Digital Health Solutions. https://www.cocir.org/fileadmin/Publications_2020/20062_ COCIR_Market_Access_Pathways_Digital_Health.pdf

    Collado-Mesa, F., Alvarez, E., & Arheart, K. (2018). The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program. Journal of the American College of Radiology: JACR, 15(12), 1753–1757.

    Core Health Indicators in the WHO European Region 2015. Special focus: Human resources for health. (2017, August 14). World Health Organization. https://www.euro.who.int/en/ data-and-evidence/evidence-resources/core-health-indicators- in-the-who-european-region/core-health-indicators-in-the- who-european-region-2015.-special-focus-human-resources- for-health

    Dantas, L. F., Fleck, J. L., Cyrino Oliveira, F. L., & Hamacher, S. (2018). No-shows in appointment scheduling - a systematic literature review. Health Policy, 122(4), 412–421.

    Esses, S. J., Lu, X., Zhao, T., Shanbhogue, K., Dane, B., Bruno, M., & Chandarana, H. (2018). Automated image quality evaluation of T2 -weighted liver MRI utilizing deep learning architecture. Journal of Magnetic Resonance Imaging: JMRI, 47(3), 723–728.

    European Commission. (2021). Proposal for a Regulation Of The European Parliament And Of The Council Laying Down
    Harmonised Rules On Artificial Intelligence (Artificial Intelligence Act) And Amending Certain Union Legislative Act.
    https://eur-lex. europa.eu/resource.html?uri=cellar:e0649735-a372-11eb- 9585-01aa75ed71a1.0001.02/DOC_1&format=PDF

    General Data Protection Regulation (GDPR) – Official Legal Text. (2016, July 13). General Data Protection Regulation (GDPR). https://gdpr-info.eu/

    Hata, A., Yanagawa, M., Yoshida, Y., Miyata, T., Tsubamoto, M., Honda, O., & Tomiyama, N. (2020). Combination of Deep Learning-Based Denoising and Iterative Reconstruction for Ultra-Low-Dose CT of the Chest: Image Quality and Lung-RADS Evaluation. AJR. American Journal of Roentgenology, 215(6), 1321–1328.

    Hauptmann, A., Arridge, S., Lucka, F., Muthurangu, V., & Steeden, J. A. (2019). Real-time cardiovascular MR with
    spatio-temporal artifact suppression using deep learning-proof of concept in congenital heart disease. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 81(2), 1143–1156.

    Higaki, T., Nakamura, Y., Zhou, J., Yu, Z., Nemoto, T., Tatsugami, F., & Awai, K. (2020). Deep Learning Reconstruction at CT: Phantom Study of the Image Characteristics. Academic Radiology, 27(1), 82–87.

    Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? In arXiv [cs.AI]. arXiv. http://arxiv.org/ abs/1712.09923

    Hötker, A. M., Da Mutten, R., Tiessen, A., Konukoglu, E., & Donati, O. F. (2021). Improving workflow in prostate MRI: AI- based decision-making on biparametric or multiparametric MRI. Insights into Imaging, 12(1), 112.

    Huang, S.-C., Pareek, A., Seyyedi, S., Banerjee, I., & Lungren, M. P. (2020). Fusion of medical imaging and electronic health records using deep learning: a systematic review and implementation guidelines. NPJ Digital Medicine, 3, 136.

    Kaissis, G. A., Makowski, M. R., Rückert, D., & Braren, R. F. (2020). Secure, privacy-preserving and federated machine learning in medical imaging. Nature Machine Intelligence, 2(6), 305–311.

    Kaissis, G., Ziller, A., Passerat-Palmbach, J., Ryffel, T., Usynin, D., Trask, A., Lima, I., Mancuso, J., Jungmann, F., Steinborn, M.-M., Saleh, A., Makowski, M., Rueckert, D., & Braren, R. (2021). End-to-end privacy preserving deep learning on multi-institutional medical imaging. Nature Machine Intelligence, 3(6), 473–484.

    Kansal, R., Bawa, A., Bansal, A., Trehan, S., Goyal, K., Goyal, N., & Malhotra, K. (2022). Differences in Knowledge and Perspectives on the Usage of Artificial Intelligence Among Doctors and Medical Students of a Developing Country: A Cross- Sectional Study. Cureus, 14(1), e21434.

    Katsari, K., Penna, D., Arena, V., Polverari, G., Ianniello, A., Italiano, D., Milani, R., Roncacci, A., Illing, R. O., & Pelosi, E. (2021). Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment. EJNMMI Physics, 8(1), 25.

    Kerpel, A., Marom, E. M., Green, M., Eifer, M., Konen, E., Mayer, A., & Betancourt Cuellar, S. L. (2021). Ultra-Low Dose Chest CT with Denoising for Lung Nodule Detection. The Israel Medical Association Journal: IMAJ, 23(9), 550–555.

    Kim, D. W., Jang, H. Y., Kim, K. W., Shin, Y., & Park, S. H. (2019).
    Design Characteristics of Studies Reporting the Performance of Artificial Intelligence Algorithms for Diagnostic Analysis of
    Medical Images: Results from Recently Published Papers. Korean Journal of Radiology: Official Journal of the Korean Radiological Society, 20(3), 405–410.

    Kim, K. H., & Park, S.-H. (2017). Artificial neural network for suppression of banding artifacts in balanced steady-state free precession MRI. Magnetic Resonance Imaging, 37, 139–146.

    Kolyshkina, I., & Simoff, S. (2021). Interpretability of Machine Learning Solutions in Public Healthcare: The CRISP-ML Approach. Frontiers in Big Data, 4, 660206.

    Komorowski, M., Celi, L. A., Badawi, O., Gordon, A. C., & Faisal, A. A. (2018). The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Nature Medicine, 24(11), 1716–1720.

    Kritikos, M. (2020). What if artificial intelligence in medical imaging could accelerate Covid-19 treatment? Think Tank
    - European Parliament. https://www.europarl.europa.eu/ thinktank/en/document/EPRS_ATA(2020)656333

    Kurasawa, H., Hayashi, K., Fujino, A., Takasugi, K., Haga, T., Waki, K., Noguchi, T., & Ohe, K. (2016). Machine-Learning- Based Prediction of a Missed Scheduled Clinical Appointment by Patients With Diabetes. Journal of Diabetes Science and Technology, 10(3), 730–736.

    Larrazabal, A. J., Nieto, N., Peterson, V., Milone, D. H., & Ferrante, E. (2020). Gender imbalance in medical imaging datasets produces biased classifiers for computer-aided diagnosis. Proceedings of the National Academy of Sciences of the United States of America, 117(23), 12592–12594.

    Larson, D. B., Johnson, L. W., Schnell, B. M., Salisbury, S. R., & Forman, H. P. (2011). National trends in CT use in the emergency department: 1995-2007. Radiology, 258(1), 164–173.

    Le, V., Frye, S., Botkin, C., Christopher, K., Gulaka, P., Sterkel, B., Frye, R., Muzaffar, R., & Osman, M. (2020). Effect of PET Scan with Count Reduction Using AI-Based Processing Techniques on Image Quality. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(supplement 1), 3095–3095.

    Levin, D. C., Parker, L., & Rao, V. M. (2017). Recent Trends in Imaging Use in Hospital Settings: Implications for Future Planning. Journal of the American College of Radiology: JACR, 14(3), 331–336.

    Liu, X., Faes, L., Kale, A. U., Wagner, S. K., Fu, D. J., Bruynseels, A., Mahendiran, T., Moraes, G., Shamdas, M., Kern, C., Ledsam, J. R., Schmid, M. K., Balaskas, K., Topol, E.J., Bachmann, L. M., Keane, P. A., & Denniston, A. K. (2019). A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet. Digital Health, 1(6), e271–e297.

    Lotan, E., Tschider, C., Sodickson, D. K., Caplan, A. L., Bruno, M., Zhang, B., & Lui, Y. W. (2020). Medical Imaging and Privacy in the Era of Artificial Intelligence: Myth, Fallacy, and the Future. Journal of the American College of Radiology: JACR, 17(9), 1159–1162.

    Mairhöfer, D., Laufer, M., Simon, P. M., Sieren, M., Bischof, A., Käster, T., Barth, E., Barkhausen, J., & Martinetz, T. (2021). An AI-based Framework for Diagnostic Quality Assessment of Ankle Radiographs. https://openreview.net/pdf?id=bj04hJss_xZ

    Makeeva, V., Gichoya, J., Hawkins, C. M., Towbin, A. J., Heilbrun, M., & Prater, A. (2019). The Application of Machine Learning to Quality Improvement Through the Lens of the Radiology Value Network. Journal of the American College of Radiology: JACR, 16(9 Pt B), 1254–1258.

    McLeavy, C. M., Chunara, M. H., Gravell, R. J., Rauf, A., Cushnie, A., Staley Talbot, C., & Hawkins, R. M. (2021). The future of CT: deep learning reconstruction. Clinical Radiology, 76(6), 407–415.

    Medical AI Evaluation. (n.d.). Retrieved February 23, 2022, from https://ericwu09.github.io/medical-ai-evaluation/

    Michoud, L., Tschudi, Y., & Villien, Y. (2019). Artificial Intelligence for Medical Imaging: Market and Technology Report 2020. Yole Développement. https://s3.i-micronews.com/ uploads/2020/01/YDR20059-AI-for-Medical-Imaging_Yole_ sample.pdf

    Murdoch, B. (2021). Privacy and artificial intelligence: challenges for protecting health information in a new era. BMC Medical Ethics, 22(1), 122.

    Nagendran, M., Chen, Y., Lovejoy, C. A., Gordon, A. C., Komorowski, M., Harvey, H., Topol, E. J., Ioannidis, J. P. A., Collins, G. S., & Maruthappu, M. (2020). Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ, 368. https://doi.org/10.1136/bmj.m689

    Nelson, A., Herron, D., Rees, G., & Nachev, P. (2019). Predicting scheduled hospital attendance with artificial intelligence. Npj Digital Medicine, 2(1), 26.

    Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science, 366(6464), 447–453.

    Ooi, S. K. G., Makmur, A., Soon, A. Y. Q., Fook-Chong, S., Liew, C., Sia, S. Y., Ting, Y. H., & Lim, C. Y. (2021). Attitudes toward artificial intelligence in radiology with learner needs assessment within radiology residency programmes: a national multi-programme survey. Singapore Medical Journal, 62(3), 126–134.

    Paranjape, K., Schinkel, M., Nannan Panday, R., Car, J., & Nanayakkara, P. (2019). Introducing Artificial Intelligence Training in Medical Education. JMIR Medical Education, 5(2), e16048.

    Park, J., Hwang, D., Kim, K. Y., Kang, S. K., Kim, Y. K., & Lee, J. S. (2018). Computed tomography super-resolution using deep convolutional neural network. Physics in Medicine and Biology, 63(14), 145011.

    Pinto Dos Santos, D., Giese, D., Brodehl, S., Chon, S. H., Staab, W., Kleinert, R., Maintz, D., & Baeßler, B. (2019). Medical students’ attitude towards artificial intelligence: a multicentre survey. European Radiology, 29(4), 1640–1646.

    Population ages 65 and above. (n.d.). The World Bank. Retrieved February 23, 2022, from https://data.worldbank.org/ indicator/SP.POP.65UP.TO.ZS

    Prevedello, L. M., Erdal, B. S., Ryu, J. L., Little, K. J., Demirer, M., Qian, S., & White, R. D. (2017). Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology, 285(3), 923–931.

    Rezazade Mehrizi, M. H., van Ooijen, P., & Homan, M. (2021). Applications of artificial intelligence (AI) in diagnostic radiology: a technography study. European Radiology, 31(4), 1805–1811.

    Rockenbach, M. A. B. (2021, June 13). Multimodal AI in healthcare: Closing the gaps. CodeX. https://medium.com/codex/ multimodal-ai-in-healthcare-1f5152e83be2

    Rudie, J. D., Gleason, T., Barkovich, M. J., Wilson, D. M., Shankaranarayanan, A., Zhang, T., Wang, L., Gong, E., Zaharchuk, G., & Villanueva-Meyer, J. E. (2022). Clinical Assessment of Deep Learning–based Super-Resolution for 3D Volumetric Brain MRI. Radiology: Artificial Intelligence, e210059.

    Schreiber-Zinaman, J., & Rosenkrantz, A. B. (2017). Frequency and reasons for extra sequences in clinical abdominal MRI examinations. Abdominal Radiology (New York), 42(1), 306–311.

    Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y., & Ghassemi, M. (2021). Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nature Medicine, 27(12), 2176–2182.

    Shelmerdine, S. C., Arthurs, O. J., Denniston, A., & Sebire, N. J. (2021). Review of study reporting guidelines for clinical studies using artificial intelligence in healthcare. BMJ Health & Care Informatics, 28(1). https://doi.org/10.1136/ bmjhci-2021-100385

    Shinagare, A. B., Ip, I. K., Abbett, S. K., Hanson, R., Seltzer, S. E., & Khorasani, R. (2014). Inpatient imaging utilization: trends of the past decade. AJR. American Journal of Roentgenology, 202(3), W277–W283.

    Singh, R., Digumarthy, S. R., Muse, V. V., Kambadakone, A. R., Blake, M. A., Tabari, A., Hoi, Y., Akino, N., Angel, E., Madan, R., & Kalra, M. K. (2020). Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT. AJR. American Journal of Roentgenology, 214(3), 566–573.

    Sit, C., Srinivasan, R., Amlani, A., Muthuswamy, K., Azam, A., Monzon, L., & Poon, D. S. (2020). Attitudes and perceptions of UK medical students towards artificial intelligence and radiology: a multicentre survey. Insights into Imaging, 11(1), 14.

    Smith-Bindman, R., Miglioretti, D. L., Johnson, E., Lee, C., Feigelson, H. S., Flynn, M., Greenlee, R. T., Kruger, R. L., Hornbrook, M. C., Roblin, D., Solberg, L. I., Vanneman, N., Weinmann, S., & Williams, A. E. (2012). Use of diagnostic imaging studies and associated radiation exposure for patients enrolled in large integrated health care systems, 1996-2010. JAMA: The Journal of the American Medical Association, 307(22), 2400–2409.

    Smith-Bindman, R., Miglioretti, D. L., & Larson, E. B. (2008). Rising use of diagnostic medical imaging in a large integrated health system. Health Affairs, 27(6), 1491–1502.

    The Medical Futurist. (n.d.). The Medical Futurist. Retrieved February 23, 2022, from https://medicalfuturist.com/fda- approved-ai-based-algorithms/

    Towards trustable machine learning. (2018). Nature Biomedical Engineering, 2(10), 709–710.

    Trivedi, H., Mesterhazy, J., Laguna, B., Vu, T., & Sohn, J. H. (2018). Automatic Determination of the Need for Intravenous Contrast in Musculoskeletal MRI Examinations Using IBM Watson’s Natural Language Processing Algorithm. Journal of Digital Imaging, 31(2), 245–251.

    Tsao, D. N. (2020, July 27). AI in medical diagnostics 2020- 2030: Image recognition, players, clinical applications, forecasts: IDTechEx. https://www.idtechex.com/en/research- report/ai-in-medical-diagnostics-2020-2030-image- recognition-players-clinical-applications-forecasts/766

    van Duffelen, J. (2021, February 22). Making a case for buying medical imaging AI: How to define the return on investment.
    Aidence. https://www.aidence.com/articles/medical-imaging- ai-roi/

    van Leeuwen, K. G., Schalekamp, S., Rutten, M. J. C. M., van Ginneken, B., & de Rooij, M. (2021). Artificial intelligence in radiology: 100 commercially available products and their scientific evidence. European Radiology, 31(6), 3797–3804.

    Vokinger, K. N., Feuerriegel, S., & Kesselheim, A. S. (2021). Mitigating bias in machine learning for medicine. Communication & Medicine, 1, 25.

    Wang, S., Cao, G., Wang, Y., Liao, S., Wang, Q., Shi, J., Li, C., & Shen, D. (2021). Review and Prospect: Artificial Intelligence in Advanced Medical Imaging. Frontiers in Radiology, 1. https://doi. org/10.3389/fradi.2021.781868

    What is personal data? (2021, January 1). ICO - Information Commissioner’s Office; ICO. https://ico.org.uk/for-organisations/ guide-to-data-protection/guide-to-the-general-data-protection- regulation-gdpr/what-is-personal-data/what-is-personal-data

    WHO. (n.d.-a). Ageing and health. Retrieved February 23, 2022, from https://www.who.int/news-room/fact-sheets/detail/ ageing-and-health

    WHO. (n.d.-b). Noncommunicable diseases. Retrieved March 6, 2022, from https://www.who.int/news-room/fact-sheets/detail/ noncommunicable-diseases

    Winder, M., Owczarek, A. J., Chudek, J., Pilch-Kowalczyk, J., & Baron, J. (2021). Are We Overdoing It? Changes in Diagnostic Imaging Workload during the Years 2010-2020 including the Impact of the SARS-CoV-2 Pandemic. Healthcare (Basel, Switzerland), 9(11). https://doi.org/10.3390/healthcare9111557

    Winkel, D. J., Heye, T., Weikert, T. J., Boll, D. T., & Stieltjes, B. (2019). Evaluation of an AI-Based Detection Software for Acute Findings in Abdominal Computed Tomography Scans: Toward an Automated Work List Prioritization of Routine CT Examinations. Investigative Radiology, 54(1), 55–59.

    Wong, T. T., Kazam, J. K., & Rasiej, M. J. (2019). Effect of Analytics-Driven Worklists on Musculoskeletal MRI
    Interpretation Times in an Academic Setting. AJR. American Journal of Roentgenology, 1–5.

    Xu, F., Pan, B., Zhu, X., Gulaka, P., Xiang, L., Gong, E., Zhang, T., Wang, J., Lin, L., Ma, Y., & Gong, N.-J. (2020). Evaluation of Deep Learning Based PET Image Enhancement Method in Diagnosis of Lymphoma. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 61(supplement 1), 431–431.

    Yoon, C. H., Torrance, R., & Scheinerman, N. (2021). Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned? Journal of Medical Ethics. https://doi.org/10.1136/medethics-2020-107102

    Yusuf, M., Atal, I., Li, J., Smith, P., Ravaud, P., Fergie, M., Callaghan, M., & Selfe, J. (2020). Reporting quality of studies using machine learning models for medical diagnosis: a systematic review. BMJ Open, 10(3), e034568.

    Zhang, D., Mishra, S., Brynjolfsson, E., Etchemendy, J., Ganguli, D., Grosz, B., Lyons, T., Manyika, J., Niebles, J. C., Sellitto, M., Shoham, Y., Clark, J., & Perrault, R. (2021). The AI Index 2021 Annual Report. In arXiv [cs.AI]. arXiv. http://arxiv.org/ abs/2103.06312

    Zhang, Y., & Yu, H. (2018). Convolutional Neural Network Based Metal Artifact Reduction in X-Ray Computed Tomography. IEEE Transactions on Medical Imaging, 37(6), 1370–1381.

    Zhu, B., Liu, J. Z., Cauley, S. F., Rosen, B. R., & Rosen, M. S. (2018). Image reconstruction by domain-transform manifold learning. Nature, 555(7697), 487–492.